NJC
Paper
Vleck Hamiltonian. We used the method proposed by Ruiz and
co-workers, in which the following equation is applied:
and S. Mohanta, Inorg. Chem., 2011, 50, 7257–7267;
(d) N. Berg, T. Rajeshkumar, S. M. Taylor, E. K. Brechin,
G. Rajaraman and L. F. Jones, Chem. – Eur. J., 2012, 18,
2
0
E
BS ꢀ EHS = 2J12(2S + S ), with S o S
1
S
2
1
2
1
(2)
5906–5918; (e) W. P. Barros, R. Inglis, G. S. Nichol,
T. Rajeshkumar, G. Rajaraman, S. Piligkos, H. O. Stumpf
and E. K. Brechin, Dalton Trans., 2013, 42, 16510; ( f ) J. P. S.
Walsh, S. Sproules, N. F. Chilton, A. Barra, G. A. Timco,
D. Collison, E. J. L. McInnes and R. E. P. Winpenny, Inorg.
Chem., 2014, 53, 8464–8472; (g) A. V. Funes, L. Carrella,
L. Sorace, E. Rentschler and P. Albor ´e s, Dalton Trans., 2015,
We have calculated the different spin topologies for the BS
nature (Fig. S8, ESI†) by alternately flipping spin on the
different metal sites. The exchange coupling constants J were
i
obtained after considering the individual pair-like components
spin interactions involved in the description of the different BS
states by solving a set of linear equations. In order to visualize
the magnetic orbitals involved in the exchange interactions we
performed the corresponding orbital transformations (COT)
4
4, 2390–2400; (h) E. A. Suturina, D. Maganas, E. Bill,
M. Atanasov and F. Neese, Inorg. Chem., 2015, 54,
948–9961; (i) I. Oyarzabal, J. Ruiz, A. J. Mota, A. Rodr ´ı guez-
Di ´e guez, J. M. Seco and E. Colacio, Dalton Trans., 2015, 44,
825–6838; ( j) F. Tori ´c , G. Pavlovi ´c , D. Paji ´c , M. Cindri ´c and
2
1
9
over the BS solutions as implemented in ORCA.
To compute the local g and ZFS tensors, the MOLCAS
2
2
6
package (as the MOLCAS@UU version) was employed. The
calculations of these parameters for the two different Ni(II) sites
in the trinuclear complex were performed by replacing the
remaining Ni(II) sites with the diamagnetic Zn(II) cation. We
performed these computations at the complete active space
self-consistent field (CASSCF) level, and the spin–orbit coupling
K. Zadro, CrystEngComm, 2018, 20, 3917–3927; (k) M. K. Singh
and G. Rajaraman, Inorg. Chem., 2019, 58, 3175–3188;
(
l) F. Tori ´c , G. Pavlovi ´c , D. Paji ´c , T. Hrenar, K. Zadro and
M. Cindri ´c , Inorg. Chim. Acta, 2019, 484, 457–463;
m) S. M. Gorun and S. J. Lippard, Inorg. Chem., 1991, 30,
625–1630; (n) K. K. Nanda, L. K. Thompson, J. N. Bridson and
K. Nag, J. Chem. Soc., Chem. Commun., 1994, 8, 1337–1338;
o) M. A. Halcrow, J. S. Sun, J. C. Huffman and G. Christou,
(
1
(SOC) was introduced in a second step using the spin orbital
restricted-active-space state-interaction (SO-RASSI) method. We
8
(
performed a states-average approach including the full d
Inorg. Chem., 1995, 34, 4167–4177; (p) H. Weihe and
H. U. G u¨ del, J. Am. Chem. Soc., 1998, 120, 2870–2879;
microstates, 10 triplets and 15 singlets in the SO-RASSI step.
For the CASSCF calculation, the active space contained eight
electrons in five orbitals (the five 3d orbitals). Relativistic
atomic natural orbital (ANO-RCC) basis sets were used with
the following contraction scheme: 7s6p4d3f2g1h (VQZP) for Ni
and Zn, 4s3p2d (VTZ) for O and N, 3s2p (VDZ) for C and 2s
(q) T. K. Karmakar, B. K. Ghosh, A. Usman, H. K. Fun,
E. Rivi `e re, T. Mallah, G. Arom ´ı and S. K. Chandra, Inorg.
Chem., 2005, 44, 2391–2399; (r) S. Triki, C. J. G ´o mez-Garc ´ı a,
E. Ruiz and J. Sala-Pala, Inorg. Chem., 2005, 44, 5501–5508;
(s) R. Inglis, L. F. Jones, C. J. Milios, S. Datta, A. Collins,
(VDZ) for H. Final g and ZFS tensors were obtained through the
S. Parsons, W. Wernsdorfer, S. Hill, S. P. Perlepes, S. Piligkos
and E. K. Brechin, Dalton Trans., 2009, 3403; (t) R. Costa, I. de,
P. R. Moreira, S. Youngme, K. Siriwong, N. Wannarit and
F. Illas, Inorg. Chem., 2010, 49, 285–294.
SINGLE-ANISO MOLCAS routine.
Conflicts of interest
3
4
5
D. Gatteschi, R. Sessoli and J. Villain, Molecular Nanomagnets,
Oxford University Press, 2006.
O. Kahn, Molecular Magnetism, Wiley-VCH Verlag GmbH &
Co. KGaA, 1993.
(a) K. C. Mondal, G. E. Kostakis, Y. Lan, W. Wernsdorfer,
C. E. Anson and A. K. Powell, Inorg. Chem., 2011, 50,
There are no conflicts of interest to declare.
Acknowledgements
We gratefully acknowledge UBA, ANPCYT and CONICET for
funding resources. PA is a staff member of CONICET. The
authors gratefully acknowledge computing time granted on
the supercomputer Mogon at Johannes Gutenberg University
Mainz (hpc.uni-mainz.de).
11604–11611; (b) H. Ke, L. Zhao, Y. Guo and J. Tang, Inorg.
Chem., 2012, 51, 2699–2705; (c) S. Bag, P. K. Bhaumik,
S. Jana, M. Das, P. Bhowmik and S. Chattopadhyay, Poly-
hedron, 2013, 65, 229–237; (d) S. Saha, S. Pal, C. J. G o´ mez-
Garc ´ı a, J. M. Clemente-Juan, K. Harms and H. P. Nayek,
Polyhedron, 2014, 74, 1–5; (e) H. Ke, S. Zhang, W. Zhu, G. Xie
and S. Chen, J. Coord. Chem., 2015, 68, 808–822;
( f ) K. Griffiths, C. W. D. Gallop, A. Abdul-Sada, A. Vargas,
O. Navarro and G. E. Kostakis, Chem. – Eur. J., 2015, 21,
6358–6361; (g) K. Griffiths, P. Kumar, J. D. Mattock,
A. Abdul-Sada, M. B. Pitak, S. J. Coles, O. Navarro,
A. Vargas and G. E. Kostakis, Inorg. Chem., 2016, 55,
6988–6994; (h) K. Griffiths, V. N. Dokorou, J. Spencer,
A. Abdul-Sada, A. Vargas and G. E. Kostakis, CrystEngComm,
2016, 18, 704–713; (i) S. Saha, S. Jana, S. Gupta, A. Ghosh
and H. P. Nayek, Polyhedron, 2016, 107, 183–189;
References
1
J. Ferrando-Soria, J. Vallejo, M. Castellano, J. Mart ´ı nez-Lillo,
E. Pardo, J. Cano, I. Castro, F. Lloret, R. Ruiz-Garc ´ı a and
M. Julve, Coord. Chem. Rev., 2017, 339, 17–103.
2
(a) V. H. Crawford, H. W. Richardson, J. R. Wasson,
D. J. Hodgson and W. E. Hatfield, Inorg. Chem., 1976, 15,
2107–2110; (b) J. Glerup, D. J. Hodgson, E. Pedersen,
A. Haaland, B. E. R. Schilling, R. Seip and K. Taugbøl, Acta
Chem. Scand., Ser. A, 1983, 37, 161–164; (c) S. Sasmal,
S. Hazra, P. Kundu, S. Dutta, G. Rajaraman, E. C. Sa n˜ udo
1
6224 | New J. Chem., 2019, 43, 16218--16225 This journal is ©The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2019