6416
X. Huang et al. / Tetrahedron Letters 53 (2012) 6414–6417
then calculated as 1.2 ꢁ 107 Mꢀ1, which is much large than
1 ꢁ 105 Mꢀ1. It can thus be deemed that once CB[7] jumps over
the isophthalic acid stopper, it will be firmly fixed on the linear
axle and the slipping of CB[7] into 2 is not irreversible in 95%
HCOOH.
Among the slipping process, CB[7] and 2 must obtain appropri-
ate energy (4Hà) to form the activated complex [2+CB[7]]à, and
generate the final product R2. It is clear that the rate constants
kon are not only dependent on the activation enthalpy 4Hà, but re-
lated to the activation entropy 4Sà from Eyring equation (Supple-
mentary data). The slipping process was then carried out at four
different temperatures (348 K, 353 K, 358 K, 368 K) to obtain the
thermodynamic parameters. The rate constants kon can be easily
determined by the second order kinetic plot (kon = 0.98
mol3 Lꢀ1 sꢀ1
,
1.67 mol3 Lꢀ1 sꢀ1
,
2.27 mol3 Lꢀ1 sꢀ1
,
8.25
mol3 Lꢀ1 sꢀ1, Fig. 3a). The value of the activation enthalpy 4Hà,
the activation entropy 4Sà, and the free activation enthalpy 4Gà
(298 K, 4Gà = 4Hà ꢀT4Sà) are evaluated as 109 kJ molꢀ1
,
66.4 J Kꢀ1molꢀ1, and 89.2 kJ molꢀ1, respectively (Fig. 3b). Com-
pared with the ground state (CB[7] and 2), a positive value of
4Sà means that the activated complex [2+CB[7]]à is highly disor-
dered and is favorable to the slipping process.
Figure 2. The absorption spectra of 2 and CB[7] mixed in 95% HCOOH (both
5 ꢁ 10ꢀ5 M) heated at 358 K for different time (from 0 to 33.5 h) and immediately
cooled to 298 K. The inset shows the corresponding calculated concentration of R2
at 454 nm.
In summary, [2]rotaxane R2 was synthesized by heating the
mixture of a dumbbell compound and the CB[7] ring. The ring
slipped over the isophthalic stopper of the dumbbell molecule
and was trapped by the hexyl-viologen axle. It should be noted that
the construction of this simple CB-based rotaxane was conducted
in formic acid using non-water soluble guests, thus may arouse
expanding interests on the supramolecular chemistry of CBs.
Acknowledgments
This work was financially supported by the NSFC/ China
(21072058),
National
Basic
Research
973
Program
(2011CB808400), and the Fundamental Research Funds for the
Central Universities.
Supplementary data
Supplementary data associated with this article can be found, in
References and notes
1. (a) Zhao, Y. L.; Dichtel, W. R.; Trabolsi, A.; Saha, S.; Aprahamian, I.; Stoddart, J. F.
J. Am. Chem. Soc. 2008, 130, 11294; (b) Zhang, K. D.; Zhao, X.; Wang, G. T.; Liu,
Y.; Zhang, Y.; Lu, H. J.; Jiang, X. K.; Li, Z. T. Angew. Chem., Int. Ed. 2011, 50, 9866;
(c) Werner, A.; Karin, B.; Marziena, Z. O.; Sebastain, S. S.; Ulrich, W. G. Chem.
Commun. 2007, 3094; (d) Wang, Q. C.; Qu, D. H.; Ren, J.; Chen, K. C.; Tian, H.
Angew. Chem., Int. Ed. 2004, 116, 2715; (e) Davidson, G. J. E.; Sharma, S.; Loeb, S.
J. Angew. Chem. 2010, 122, 5058; (f) Li, S. J.; Liu, M.; Zheng, B.; Zhu, K. L.; Wang,
F.; Li, N.; Zhao, X. L.; Huang, F. H. Org. Lett. 2009, 11, 3350; (g) Günbas, D. D.;
Zalewski, L.; Brouwer, A. M. Chem. Commun. 2011, 47, 4977; (h) Tokunaga, Y.;
Nakamura, T.; Yoshioka, M.; Shimomura, Y. Tetrahedron Lett. 2006, 47, 5901.
2. (a) Ma, X.; Tian, H. Chem. Soc. Rev. 2010, 39, 70; (b) Leigh, D. A.; Morales, M. Á.
F.; Pérez, E. M.; Wong, J. K. Y.; Saiz, C. G.; Slawin, A. M. Z.; Carmichael, A. J.;
Haddleton, D. M.; Brouwer, A. M.; Buma, W. J.; Wurpel, G. W. H.; León, S.;
Zerbetto, F. Angew. Chem., Int. Ed. 2005, 44, 3062; (c) Periyasamy, G.; Collin, J. P.;
Sauvage, J. P.; Levine, R. D.; Remacle, F. Chem. Eur. J. 2009, 15, 1310.
3. (a) Cavallini, M.; Biscarni, F.; León, S.; Zerbetto, F.; Bottari, G.; Leigh, D. A.
Science 2003, 299, 531; (b) Green, J. E.; Choi, J. W.; Boukai, A.; Bunimovich, Y.;
Johnston-Halperin, E.; DeIonno, E.; Luo, Y.; Sheriff, B. A.; Xu, K.; Shin, Y. S.;
Tseng, H. R.; Stoddart, J. F.; Heath, J. R. Nature 2007, 445, 414; (c) Zhang, W.;
DeIonno, E.; Dichtel, W. R.; Fang, L.; Trabolsi, A.; Olsen, J. C.; Benítez, D.; Heath,
J. R.; Stoddart, J. F. J. Mater. Chem. 2011, 21, 1487.
Figure 3. Determination of (a) the rate constants for 2 and CB[7] in 95% HCOOH at
four different temperatures (R-square is 0.999 (348 K), 0.992 (353 K), 0.991 (358 K),
0.998 (368 K)); (b) 4Hà , 4Sà, and 4Gà by eyring equation (R-square is 0.974).
4. (a) Flood, A. H.; Stoddart, J. F.; Steverman, D. W.; Heath, J. R. Science 2004, 306,
2055; (b) Jiang, Y.; Guo, J.-B.; Chen, C.-F. Org. Lett. 2010, 12, 4248; (c) Heath, J. R.
Annu. Rev. Mater. Res. 2009, 39, 1; (d) Zhu, L.-L.; Ma, X.; Ji, F. Y.; Wang, Q. C.;
Tian, H. Chem. Eur. J. 2007, 13, 9216; (e) Moretto, A.; Menegazzo, I.; Crisma, M.;
Shotton, E. J.; Nowell, H.; Mammi, S.; Toniolo, C. Angew. Chem. 2009, 121, 9148;
(f) Ji, F. Y.; Zhu, L. L.; Ma, X.; Wang, Q. C.; Tian, H. Tetrahedron Lett. 2009, 50,
ture in 95% HCOOH (both 5 ꢁ 10ꢀ5 M) at 358 K, as can be seen in
Figure 2. The peak at 454 nm becomes smaller and approaches to
zero after 33.5 h. Ce(R2) (the equilibrium concentration of R2 in
the mixture solution) was estimated as 4.8 ꢁ 10ꢀ5 M and Ke was