(s, 3H, Me-quin), 2.88 (s, 3H, Me-quin), 2.89 (s, 3H, Me-quin), 7.61 (m, 3H,
quinH), 7.82 (m, 3H, quinH), 7.92 (m, 3H, quinH), 8.35 (m, 3H, quinH). 13
C
NMR (100.6 MHz, CDCl3, 298 K), d 212.24, 211.56 (2 3 m, 3 3 AlMe),
27.22, 26.79, 26.45, 25.43, 25.10, 24.57 (6 3 s, 3 3 AlMe2), 25.53,
25.82, 25.93 (3 3 s, Me-quin), 117.15 (m, 3 3 aryl C), 125.28–127.61
(overlapping m, 9 3 aryl C), 136.33 (m, 3 3 aryl C), 150.98 (m, 3 3 aryl
C), 158.45 (m, 3 3 aryl C), 169.31 (m, 3 3 aryl C). EI-MS: m/z: 807 (M+
2 Me). IR: n(m3-O)Al3 800 cm21
.
§ Crystal data: For 1: C24H42N6Al4, M = 522.6, orthorhombic, space group
Pbca (no. 61), a = 8.717(1), b = 16.868(1), c = 20.416(2) Å, V =
3002.0(4) Å3, Z = 4 (the complex has crystallographic Ci symmetry), Dc =
1.156 g cm23, m(Cu-Ka) = 16.1 cm21, F(000) = 1120, T = 183 K; clear
prisms, 0.27 3 0.23 3 0.13 mm, Siemens P4/RA diffractometer, w-scans,
2182 independent reflections. The structure was solved by direct methods
and the non-hydrogen atoms were refined anisotropically using full-matrix
least squares based on F2 to give R1 = 0.069, wR2 = 0.173 for 1479
independent observed reflections [|Fo| > 4s(|Fo|), 2q < 120°] and 162
parameters.
For 3: C36H48N6O6Al6, M = 822.7, orthorhombic, space group P212121
(no. 19), a = 12.152(1), b = 16.054(1), c = 22.310(1) Å, V = 4352.3(6)
Å3, Z = 4, Dc = 1.256 g cm23, m(Cu-Ka) = 17.9 cm21, F(000) = 1728,
T = 173 K; yellow rhombs, 0.50 3 0.23 3 0.23 mm, Siemens P4/RA
diffractometer, w-scans, 4017 independent reflections. The structure was
solved by direct methods and the non-hydrogen atoms were refined
Fig. 1 The molecular structure of 3. Selected bond lengths (Å); Al(1)–O(1)
1.811(4), Al(1)–N(2) 2.021(5), Al(2)–O(1) 1.785(4), Al(2)–O(3) 1.788(4),
Al(2)–O(2) 1.779(4), Al(3)–O(3) 1.827(4), Al(3)–N(22) 2.034(5), Al(4)–
O(3) 1.770(4), Al(4)–O(4) 1.783(5), Al(4)–O(5) 1.785(4), Al(5)–O(5)
1.825(4), Al(5)–N(42) 2.015, Al(6)–O(1) 1.784(4), Al(6)–O(5) 1.794(4),
Al(6)–O(6) 1.785(5).
anisotropically using full-matrix least squares based on F2 to give R1
=
0.055, wR2 = 0.133 for 3483 independent observed reflections [|Fo| >
4s(|Fo|), 2q < 128°] and 488 parameters. The absolute structure of 3 was
determined by use of the Flack parameter which refined to a value of
20.07(7).
crystallographic files in .cif format.
note that the formation of N-heterocycles by this methodology
is related to the intramolecular Ritter reaction7–9 in which
nitrilium salts, generated in the presence of Friedel–Crafts
reagents, react with a second nitrile molecule to give quinazo-
line ring systems.9
1 A. W. Hofmann, Chem. Ber., 1868, 1, 194.
Future studies will focus on further exploiting nitrile
insertions into aluminium (and gallium) bonds to access unusual
inorganic ring systems and nitrogen heterocycle products.
The EPSRC and the Leverhulme Trust (for a Research
Fellowship to C. R.) are thanked for financial support. Professor
Charles Rees is thanked for helpful discussions.
2 E. Frankland and J. C. Evans, J. Chem. Soc., 1880, 37, 563.
3 H. J. Emeléus and K. Wade, J. Chem. Soc., 1960, 2614; J. E. Lloyd and
K. Wade, J. Chem. Soc., 1964, 1649; J. E. Lloyd and K. Wade, J. Chem.
Soc., 1965, 2662; J. R. Jennings, J. E. Lloyd and K. Wade, J. Chem. Soc.,
1965, 5083; I. Pattinson and K. Wade, J. Chem. Soc., 1968, 57; J. R.
Jennings and K. Wade, J. Chem. Soc. A, 1968, 1946.
4 W. Gerrard, M. F. Lappert and J. W. Wallis, J. Chem. Soc., 1960, 2178;
M. F. Lappert and B. Prokai, Adv. Organomet. Chem., 1967, 5, 225 and
references therein.
Notes and References
‡ Satisfactory microanalyses have been obtained.
5 V. C. Gibson, C. Redshaw, A. J. P. White and D. J. Williams, Angew.
Chem., Int. Ed., 1999, 961.
For 1: 1H NMR (400 MHz, C6D6, 298 K), d 20.75, 20.48, 20.42, 20.37
(4 3 s, 8 3 3H, AlMe), 1.29 (s, 2 3 3H, CMe), 6.36–7.27 (3 3 m, 8H, aryl
H), NH not seen. 13C NMR (100.6 MHz, C6D6, 298 K), d 212.24, 212.81
(br, AlMe), 28.91 (br, AlMe), 25.99 (br, AlMe). IR: n(N–H) 3247
6 R. L. Wells, H. Rahbarnoohi, P. B. Glaser, L. M. Liable-Sands and A. L.
Rheingold, Organometallics, 1996, 15, 3204.
7 J. J. Ritter and P. P. Minieri, J. Am. Chem. Soc., 1948, 70, 4045; J. J. Ritter
and J. Kalish, J. Am. Chem. Soc., 1948, 70, 4048.
8 L. I. Krimen and D. J. Cota, Org. React. (N.Y.), 1969, 17, 213.
9 R. Bishop, in Comprehensive Organic Synthesis, ed. B. M. Trost and I.
Fleming, Pergamon, Oxford, UK, 1991, vol. 6 and references therein.
cm21
.
For 3: 1H NMR (400 MHz, CDCl3, 298 K), d 20.87, 20.82, 20.59,
20.47, 20.46, 20.45, 20.24, 20.23, 20.22 (9 3 s, each 3H, AlMe), 2.79
80
Chem. Commun., 2001, 79–80