DOI: 10.1039/D0CP02783A
Page 5 of 7
Physical Chemistry Chemical Physics
† Electronic Supplementary Information (ESI) available: [details of
60 experimental sections, including synthesis, characterization, spectra,
SAXSS patterns and optical images]. See DOI: 10.1039/b000000x/
To monitor the molecular-level change, we conducted high-
pressure Raman spectra to monitor the Cz2CN single crystal. The
Raman spectra could track the molecular structure changes during
compression within the wavenumber range from 200 cm-1 to
2000 cm-1. As shown in Figure 6, most Raman vibration modes
exhibited blue-shifts as expected because of the decreased
interatomic distances and the increased effective force constants
upon compression.58, 59 When the pressure was increased to 6.50
10 GPa, no new Raman peaks appeared and all the Raman peaks
were retained, implying that only conformation change not phase
transition occur during the compression process. The increasing
pressure is not able to change the molecular structure of Cz2CN.
Once the pressure returned to atmosphere, the measured Raman
15 spectrum was identical with the original one (Figure S19),
suggesting the conformational change is reversible.
Based on the above results, several key points can be
concluded. (1) Cz2CN possesses two characteristic emissions, the
LE emission and the ICT emission, due to the twisted D-A
20 structure. (2) The ICT emission is more sensitive to the external
environment, such as solvent polarity, aggregation; particularly,
aggregation can enhance the ICT emission of Cz2CN. (3) The
solid-state emission color change upon force/pressure is
dominated by ICT emission, because mechanical stimuli is more
25 likely to disturb the intermolecular interactions and molecular
conformation which are both closely related to the ICT emission.
5
1.
2.
3.
M. Martinez-Abadia, R. Gimenez and M. B. Ros, Adv. Mater,
2018, 30, 1704161.
Y. Sagara, S. Yamane, M. Mitani, C. Weder and T. Kato, Adv.
Mater, 2016, 28, 1073-1095.
X. Liu, A. Li, W. Xu, Z. Ma and X. Jia, Materials Chemistry
Frontiers, 2019, 3, 620-625.
65
70 4.
H. J. Kim, D. R. Whang, J. Gierschner, C. H. Lee and S. Y.
Park, Angew. Chem. Int. Ed, 2015, 54, 4330-4333.
S. Mukherjee and P. Thilagar, Angew. Chem. Int. Ed, 2019,
58, 7922-7932.
5.
6.
75
Z. Ma, M. Teng, Z. Wang, S. Yang and X. Jia, Angew. Chem.
Int. Ed, 2013, 52, 12268-12272.
7.
Z. Ma, Z. Wang, X. Meng, Z. Ma, Z. Xu, Y. Ma and X. Jia,
Angew. Chem. Int. Ed, 2016, 55, 519-522.
8.
L. Huang, Y. Qiu, C. Wu, Z. Ma, Z. Shen and X. Jia, J. Mater.
Chem. C, 2018, 6, 10250-10255.
80 9.
J. Mei, Y. Hong, J. W. Lam, A. Qin, Y. Tang and B. Z. Tang,
Adv. Mater, 2014, 26, 5429-5479.
10.
J. Mei, N. L. C. Leung, R. T. K. Kwok, J. W. Y. Lam and B.
Z. Tang, Chem.Rev, 2015, 115, 11718–11940.
D. Dang, Z. Qiu, T. Han, Y. Liu, M. Chen, R. T. K. Kwok, J.
W. Y. Lam and B. Z. Tang, Adv. Funct. Mater, 2018, 28,
1707210.
11.
85
90
12.
13.
G. Huang, Y. Jiang, S. Yang, B. S. Li and B. Z. Tang, Adv.
Funct. Mater, 2019, 29, 1900516.
B. Huang, W. C. Chen, Z. Li, J. Zhang, W. Zhao, Y. Feng, B.
Z. Tang and C. S. Lee, Angew. Chem. Int. Ed, 2018, 57,
12473-12477.
Conclusions
In summary, we report a newly designed molecule Cz2CN
with twisted D-A structure. Cz2CN shows fascinating AIEE,
30 solvatochromism and force-induced multicolored variation. The
unique stimuli-responsive properties stem from HLCT emission
of Cz2CN composed of LE component and ICT component. In
particular, ICT emission of Cz2CN is susceptive to external
stimuli and is dominated in the emission enhancement and color
35 change. This study may open a new strategy to provide a broad
perspective for the development of stimuli-responsive AIEE
materials.
14.
H. Q. Peng, X. Zheng, T. Han, R. T. K. Kwok, J. W. Y. Lam,
X. Huang and B. Z. Tang, J. Am. Chem. Soc, 2017, 139,
10150-10156.
J. Wang, J. Mei, R. Hu, J. Z. Sun, A. Qin and B. Z. Tang, J.
Am. Chem. Soc, 2012, 134, 9956-9966.
95 15.
16.
N. Jiang, T. Shen, J. Z. Sun and B. Z. Tang, Science China
Materials, 2019, 62, 1227-1235.
17.
Z. Chi, X. Zhang, B. Xu, X. Zhou, C. Ma, Y. Zhang, S. Liu
and J. Xu, Chem. Soc. Rev, 2012, 41, 3878-3896.
Y. Li, Z. Ma, A. Li, W. Xu, Y. Wang, H. Jiang, K. Wang, Y.
Zhao and X. Jia, ACS Appl Mater Interfaces, 2017, 9, 8910-
8918.
100
18.
19.
20.
21.
Z. Ma, Z. Wang, M. Teng, Z. Xu and X. Jia, Chemphyschem,
2015, 16, 1811-1828.
L. Wang, K. Wang, B. Zou, K. Ye, H. Zhang and Y. Wang,
Adv. Mater, 2015, 27, 2918-2922.
X. Wang, H. Zhang, R. Yu, L. Dong, D. Peng, A. Zhang, Y.
Zhang, H. Liu, C. Pan and Z. L. Wang, Adv. Mater, 2015, 27,
2324-2331.
X. Wang, Q. Liu, H. Yan, Z. Liu, M. Yao, Q. Zhang, S. Gong
and W. He, Chem. Commun 2015, 51, 7497-7500.
Q. Sui, X. T. Ren, Y. X. Dai, K. Wang, W. T. Li, T. Gong, J.
J. Fang, B. Zou, E. Q. Gao and L. Wang, Chemical Science,
2017, 8, 2758-2768.
Z. Ma, X. Meng, Y. Ji, A. Li, G. Qi, W. Xu, B. Zou, Y. Ma, G.
C. Kuang and X. Jia, Dyes and Pigments, 2019, 162, 136-144.
J. Sun, J. Han, L. Yang, Y. Duan, T. Han and Y. Jing, J.
Mater. Chem. C, 2016, 4, 8276-8283
B. Shao, R. Jin, A. Li, Y. Liu and W. Tian, J. Mater. Chem. C,
2019, 7, 3263-3268
Y. Liu, Q. Zeng, B. Zou, Y. Liu and W. Tian, Angew. Chem.
Int. Ed, 2018, 57, 15907-15907.
Y. Sagara, T. Mutai, I. Yoshikawa and K. Araki, J. Am. Chem.
Soc, 2007, 129, 1520-1521.
Acknowledgments
105
110
115
This work is financially supported by the Beijing Natural Science
40 Foundation (2182054), the National Natural Science Foundation
of China (21704002), the Big Science Project from BUCT
(XK180301), and the Fundamental Research Funds for the
Central Universities to Z. Y. Ma.
22.
23.
Notes and references
45 a Beijing State Key Laboratory of Organic-Inorganic Composites, College
of Chemical Engineering, Beijing University of Chemical Technology,
b State Key Laboratory for Supramolecular Structure and Materials,
Institute of Theoretical Chemistry, College of Physics, Jilin University,
50 Changchun 130012, China.
24.
25.
120 26.
c National high-tech industrial development zone in Jingdezhen,
Jingdezhen, 333000, China.
27.
d Beijing National Laboratory for Molecular Sciences, Key Laboratory of
Polymer Chemistry and Physics of the Ministry of Education, College of
55 Chemistry and Molecular Engineering, Peking University, Beijing
100871, China.
28.
125
29.
X. Liu, C. Ma, A. Li, W. Xu, Z. Ma and X. Jia, J. Mater.
Chem. C, 2019, 7, 8398-8403
Z. Wang, Z. Ma, Y. Wang, Z. Xu, Y. Luo, Y. Wei and X. Jia,
Adv. Mater, 2015, 27, 6469-6474.
e These authors contributed equally.
30.
130 31.
P. Z. Chen, H. Zhang, L. Y. Niu, Y. Zhang, Y. Z. Chen, H. B.
Fu and Q. Z. Yang, Adv. Funct. Mater, 2017, 27, 1700332.
This journal is © The Royal Society of Chemistry [year]
Journal Name, [year], [vol], 00–00 | 5