S. Ma et al.
to afford 44 mg (88%, >99% ee) of (R,R)-(À)-3a. HPLC conditions:
Ed. 2003, 42, 1955; d) For an account, see: S. Ma, Acc. Chem. Res.
2003, 36, 701.
[4] For most recent coupling cyclization reaction of other functionalized
allenes, see: a) S. Ma, W. Gao, Synlett 2002, 65; b) S. Ma, N. Jiao, S.
Zhao, H. Hou, J. Org. Chem. 2002, 67, 2837; c) S. Ma, W. Gao, J.
Org. Chem. 2002, 67, 6104; d) S. Ma, H. Xie, J. Org. Chem. 2002, 67,
À1
AD column; rate: 0.7 mLmin ; eluent: hexane/iPrOH 90/10; [a]=À262
(
c=0.76 in CHCl
3
).
(
(
R,R)-(À)-3,3’-Dimethyl-5,5’-diphenyl-5H,5’H-[4,4’]bifuranyl-2,2’-dione
3b)
Method C: A solution of R-(À)-2-methyl-4-phenyl-2,3-butadienoic acid
1b; 44 mg, 0.253 mmol, 99% ee), benzoquinone (16 mg, 0.148 mmol),
and PdCl (2 mg, 0.011 mmol) in DMF (2 mL) was stirred at 808C for 2 h
6
575; e) S. Ma, W. Gao, Org. Lett. 2002, 4, 2989.
(
[
5] For the recent Pd-catalyzed reaction of allenic amides, see: a) H.
Ohno, M. Anzai, A. Toda, S. Ohishi, N. Fujii, T. Tanaka, Y. Takemo-
to, T. Ibuka, J. Org. Chem. 2001, 66, 4904; b) S.-K. Kang, K.-J. Kim,
Org. Lett. 2001, 3, 511; c) W. F. J. Karstens, D. Klomp, F. P. J. T.
Rutjes, H. Hiemstra, Tetrahedron 2001, 57, 5123.
6] For Pd-catalyzed reaction of 2-(allenyl)malonates, see: a) S. Kamijo,
Y. Yamamoto, Tetrahedron Lett. 1999, 40, 1747; b) M. Meguro, Y.
Yamamoto, J. Org. Chem. 1999, 64, 694; c) L. Besson, J. Bazin, J.
Gore, B. Cazes, Tetrahedron Lett. 1994, 35, 2881.
2
to afford 44 mg (100%, 99% ee) of (R,R)-(À)-3b. (R*,S*:R*,R*=1:25):
À1
HPLC conditions: AD column; rate: 0.7 mLmin
; eluent: hexane/
iPrOH 70/30; [a]=À325 (c=1.055 in CHCl
3
).
(
S,S)-(+)-3,3’-Dimethyl-5,5’-dinaphthy-5H,5’H-[4,4’]bifuranyl-2,2’-dione
3d)Method C: A solution of S-(+)-2-methyl-4-naphthyl-2,3-butadienoic
[
(
acid (1d; 56 mg, 0.25 mmol, 98% ee), benzoquinone (20 mg,
.189 mmol), and PdCl (2 mg, 0.011 mmol) in DMF (2 mL) was stirred
at 808C for 2 h to afford 48 mg (86%, >99% ee) of (S,S)-(+)-3d.
0
2
[
7] For a review on the palladium-catalyzed chemistry of allenes, see:
a) R. Zimmer, C. U. Dinesh, E. Nandanan, F. A. Khan, Chem. Rev.
(
R*,S*:R*,R*=1: 20); HPLC conditions: AD column; rate:
À1
0
.7 mLmin
CHCl ).
S,S)-(+)-3,3’-Dipropyl-5,5’-di(4’-bromophenyl)-5H,5’H-[4,4’]bifuranyl-
,2’-dione (3o)
; eluent: hexane/iPrOH 60/40; [a]=+210 (c=0.945 in
2
000, 100, 3067; b) S. Ma, Handbook of Organopalladium Chemistry
3
for Organic Synthesis (Ed.: E. Negishi), Wiley, New York, 2002,
p. 1491.
(
2
[8] a) For dimerization of 1,2-allenyl ketones, see: A. S. K. Hashmi, L.
Schwarz, J. H. Choi, T. M. Frost, Angew. Chem. 2000, 112, 2382;
Angew. Chem. Int. Ed. 2000, 39, 2285; b) For a recent highlight, see:
A. S. K. Hashmi, Angew. Chem. 2000, 112, 3737; Angew. Chem. Int.
Ed. 2000, 39, 3590.
[9] S. Ma, Z. Yu, Angew. Chem. 2002, 114, 1853; Angew. Chem. Int. Ed.
2002, 41, 1775.
[10] Palladium Reagents and Catalysts: New Perspectives for 21st Century
(Ed.: J. Tsuji), Wiley, Chichester (UK), 2004, pp. 27–103.
[11] S. Ma, Z. Yu. Org. Lett. 2003, 5, 1507; Corrigendum: S. Ma, Z. Yu.
Org. Lett. 2003, 5, 2581.
Method C: A solution of S-(+)-4-(4’-bromophenyl)-2-propyl-2,3-butadie-
noic acid (1o; 35 mg, 0.125 mmol, 99% ee), benzoquinone (9 mg,
0
2
.083 mmol), and PdCl (1 mg, 0.006 mmol) in DMF (1 mL) was stirred
at 808C for 2 h to afford 33 mg (94%, 98% ee) of (S,S)-(+)-3o.
À1
(
R*,S*:R*,R*=1: 24): HPLC conditions: AD column; rate: 0.7 mLmin
;
eluent: hexane/iPrOH 85/15; [a]=+194 (c=0.785 in CHCl
3
); m.p. 216–
): d=7.38 (d, J=8.4 Hz, 2H), 6.82 (d,
J=8.4 Hz, 2H), 5.81 (s, 1H), 2.33–2.21 (m, 1H), 2.14–2.00 (m, 1H), 1.59–
1
2
188C; H NMR (300 MHz, CDCl
3
1
3
1
.42 (m, 1H), 1.31–1.14 (m, 1H), 0.85 ppm (t, J=7.5 Hz, 3H); C NMR
(
1
CDCl , 75.4 MHz): d=14.1, 20.8, 27.3, 81.8, 123.9, 127.6, 131.9, 132.3,
3
+
79
33.0, 150.0, 171.6 ppm; EIMS: m/z (%): 558 (22.12) [M ( Br)], 560
[12] a) Y. Chia, F. Chang, Y. Wu, Tetrahedron Lett. 1999, 40, 7513; b) S.
Takahashi, K. Maeda, S. Hirota, T. Nakata, Org. Lett. 1999, 1, 2025;
c) R. C. Larock, B. Riefling, C. A. Fellows, J. Org. Chem. 1978, 43,
131, and references therein.
+
81
À1
(
36.58) [M ( Br)], 323 (100); IR(KBr): n˜ =1745, 1645, 1489 cm ; ele-
mental analysis calcd (%) for C26 : C 55.74, H 4.32, found C
5.69, H 4.28.
H
2 4
24Br O
5
[
13] a) J. E. Bꢁckvall, P. G. Andersson, J. Am. Chem. Soc. 1992, 114,
6
5
374; b) P. G. Andersson, J. E. Bꢁckvall, J. Org. Chem. 1991, 56,
349.
[
14] Crystal data for (R*,R*)-3l:
space group P2 /c; final R indices [I>2s(I)]: R1=0.0696, wR2
0.1602; unit cell: a=12.610(7), b=7.611(4), c=12.344(7) ꢂ, b
24 38 4 r
C H O , M =390.54, monoclinic,
Acknowledgements
1
=
=
Financial supports from the National Natural Science Foundation of
China and the Major State Basic Research Development Program
Grant No. G2000077500), and Shanghai Municipal Committee of Sci-
3
98.895(10)8,
V=1170.4(11) ꢂ ,
T=293(2) K,
wavelength:
0
=
.71073 ꢂ, Z=2, reflections collected/unique: 6154/2301 (Rint
0.1985), restraints: 7, parameters: 300. CCDC 244017 contains the
(
ence and Technology are greatly appreciated.
supplementary crystallographic data for this paper. These data can
be obtained free of charge from The Cambridge Crystallographic
Data Centre via www.ccdc.cam.ac.uk/data_request/cif.
[
[
1] a) Allenes in Organic Synthesis (Eds.: H. F. Schuster, G. M. Coppo-
la), Wiley, New York, 1984, pp. 1–8; b) The Chemistry of Ketenes,
Allenes, and Related Compounds, Part 1 (Ed.: S. Patai), Wiley, New
York, 1980, pp. 1–154.
2] For some typical examples of axial chirality transfer, see: a) G.
Kresze, L. Kloimstein, W. Runge, Justus Liebigs Ann. Chem. 1976,
[
15] Crystal data for compound (S,S)-(+)-3o. C26
monoclinic, space group P2 , MoKa, final R indices [I>2s(I)]: R1
0.0434, wR2=0.1010; unit cell: a=9.6374(10), b=12.0918(12), c
2 4 r
H24Br O , M =560.27,
1
=
=
=
3
10.8607(11) ꢂ, b=103.264(2)8, V=1231.9(2) ꢂ , T=293(2) K, Z
2, reflections collected/unique: 7582/4800 (Rint =0.0719), no obser-
vation [I>2s(I)] 3086, parameters 300. CCDC 223809 contains the
supplementary crystallographic data for this paper. These data can
be obtained free of charge from The Cambridge Crystallographic
Data Centre via www.ccdc.cam.ac.uk/data_request/cif.
6
4
1
4, 979; b) S. Musierowicz, A. E. Wroblewski, Tetrahedron 1978, 34,
61; c) J. A. Marshall, W. A. Wolf, E. M. Wallace, J. Org. Chem.
997, 62, 367; d) S. Ma, S. Wu, Chem. Commun. 2001, 441; e) S. Ma,
Z. Shi, Chem. Commun. 2002, 540; f) S. Ma, F. Yu, W. Gao, J. Org.
Chem. 2003, 68, 5943; g) S. Ma, Z. Yu, J. Org. Chem. 2003, 68, 6149.
3] For most recent results of the synthesis of butenolides from this
group, see: a) S. Ma, Z. Shi, S. Wu, Tetrahedron: Asymmetry 2001,
[
16] For the reports on the synthesis of bibutenolide see: a) A. Padwa,
F. R. Kinder, J. Org. Chem. 1993, 58, 21; b) F. R. Kinder, A. Padwa,
Tetrahedron Lett. 1990, 31, 6835.
[
1
2, 193; b) S. Ma, D. Duan, Y. Wang, J. Comb. Chem. 2002, 4, 239;
Received: October 23, 2004
c) S. Ma, Z. Yu, Angew. Chem. 2003, 115, 1999; Angew. Chem. Int.
Published online: February 7, 2005
2356
ꢀ 2005 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
Chem. Eur. J. 2005, 11, 2351 – 2356