242
Novoa de Armas, Blaton, Peeters, De Ranter, Su a´ rez, Ochoa, Verdecia, and Salfr a´ n
base of the DHP boat, activity of DHP’s increases.4,28
The torsion angle that describes this parameter is
The C
-
--- H���O intramolecular interaction [C9���
˚
˚
O5: 2.833(5) A, H9a���O5: 2.14 A, and
0
0
�
C3---- C4---- C1 ---- C2 . The bisection of the aromatic
ring with respect to the DHP ring can be expressed
as the difference between this torsion angle and the
C9
˚
-
--- H9a���O5: 128 ; and C10���Cl1: 3.081(4)
˚
----
�
A, H10���Cl1: 2.67 A, and C10 H10���Cl1: 107 ]
stabilizes the molecular conformation in the crystal.
�
ideal value of 60 . This torsion angle shows that the
plane of the phenyl ring is approximately bisecting
the pyridine ring. The dihedral angle between their re-
spective least-squares planes is 87.79(16) . This inter-
Acknowledgments
�
ring orientation is preferred because it minimizes the
This work was supported in part by the K.U.
Leuven (Belgium) through an IRO scholarship for
H. Novoa. M. Su a´ rez is indebted to Proyectos Alma
Mater (U.H.) for its financial support.
steric strain imposed by the ortho phenyl substituent.
0
The value of the dihedral angle C1 ---- C4---- C3---- C2,
�
lowerthan120 , showsthatthephenylgroupisinaxial
position.
�
This compound exhibits a deviation of 1.7(3)
References
from the ideal value. The sum, 6|�|, of the absolute
values of the internal torsion angles of the DHP ring is
a measure of its planarity (Table II). Published struc-
ture activity ratios indicate that increased planarity
of this ring (6|�| tending to zero) correlates with
higher activity of the compound. Larger 6|�| values
are observed, in general, for parent compounds with a
nitro group in the meta position. Deviations from pla-
narity in the DHP ring, defined as the sum of the nu-
meric values of the six-intraring torsion angles, range
1
2
. Bossert, F.; Vater, W. Med. Res. Rev. 1989, 9, 291.
. Triggle, D.J.; Langs, D.A.; Jamis, R.A. Med. Res. Rev. 1989, 9,
123.
3. Janis, R.A.; Silver, P.J.; Triggle, D.J. Adv. Drug Res. 1987, 16,
09.
. Triggle, A.M.; Scheffer, E.; Triggle, D.J. J. Med. Chem. 1980,
3, 1442.
3
4
2
5. Novoa de Armas, H.; Blaton, N.; Peeters, O.M.; De Ranter,
´
C.; Su a´ rez, M.; Rolando, E.; Verdecia, Y.; Ochoa, E.; Martin,
N.; Quinteiro, M.; Seoane, C.; Soto, J.L. J. Heterocyclic. Chem.
2
000 (submitted).
6. Kuthan, J.; Kurfurst, A. Ind. Eng. Chem. Prod. Res. Dev. 1982,
1, 191.
7. Goldmann, S.; Stoltefuss, J. Angew Chem. Int. Ed. Engl. 1991,
0, 1559.
�
�
from 52.1 to 112.5 in the investigated nifedipines
29
2
derivatives. Compound (II) exhibits a 6|�| value of
�
2
9.9(5) , which is one of the lowest values ever found.
3
However, it is difficult to justify in this case the activity
comparing the degree of planarity of the ring in the
solid state. Presumably, activity should be determined
in solution. Besides, the crystal structure was obtained
at room temperature, and there is a 75%/25% disor-
dered chlorine atom on the phenyl group at C4 of the
DHP ring, both of which may affect how “planar” this
ring appears in the solid state.
8. Guzman, A.; Romero, M.; Maddox, A.; Muchowski, J. J. Org.
Chem. 1990, 55, 5793.
´
9
. Verdecia, Y.; Su a´ rez M.; Morales, A.; Rodriguez, E.; Ochoa,
´
E.; Gonz a´ lez, L.; Martin, N.; Quinteiro, M.; Seoane, C.; Soto,
J.L. J. Chem. Soc. Perkin Trans. 1, 1996, 947.
´
10. Su a´ rez, M.; Ochoa, E.; Pita, B.; Espinosa, R.; Martin, N.;
Quinteiro, M.; Seoane, C.; Soto, J.L. J. Heterocyclic. Chem.
1997, 34, 931.
1
1
1. Morales, A.; Ochoa, E.; Su a´ rez, M.; Verdecia, Y.; Gonzalez, L.;
´
Martin, N.; Quinteiro, M.; Seoane, C.; Soto, J.L. J. Heterocyclic.
Chem. 1996, 33, 103.
For a series of compounds investigated by Triggle
2. Sheldrick, G.M. SHELXS97, Program for the Solution of Crys-
tal Structures; University of G o¨ ttingen: Germany, 1997.
4
and coworkers, the authors noted an apparent corre-
lation between activity (as measured by IC50 for tonic
CD response in guinea pig ileal longitudinal muscle)
andtheplanarityoftheDHPring(asindicatedby�ave,
the average of the absolute value of the torsion angles
13. Sheldrick, G.M. SHELXL97, Program for the Refinement of
Crystal Structures; University of G o¨ ttingen: Germany, 1997.
1
4. International Tables for X-Ray Crystallography, Vol. C;
Dodrecht: Kluwer Academic Publishers, 1992.
15. Stoe & Co. (1992). DIF4: Diffractometer Control Program
Version 7.09), REDU-4: Data Reduction Program (Version
.03), EMPIR Empirical Absortion Correction Program
Version 1.03). Darmstadt: Germany.
(
7
(
C2---- C3---- C4---- C5 and C3---- C4---- C5---- C6). The value
�
�
ave < 15 corresponds to the most potent compounds
�
in that series. In compound (II) �ave is 8.4(4) , which
16. Bergerhoff, G. DIAMOND-Visual Crystal Structure Informa-
tion System; Prof. Dr. G. Bergerhoff, Gerhard-Domagk-Str. 1,
is in the range of the most active compounds studied
by Triggle’s group.
5
3121 Bonn, Germany, 1996.
1
7. Spek, A.L. (1990). PLATON, An Integrated Tool for the Anal-
ysis of the results of a single Crystal Structure Determination.
Acta Crystallogr. A46, C-34.
The molecules in the crystal are held to-
gether by means of an intermolecular hydrogen
1
8. Dewar, M.J.S.; Zoebisch, E.G.; Hearly, E.F.; Stewart, J.J.P.
J. Am. Chem. Soc. 1985, 107, 3902.
˚
˚
bond [N1���O3: 2.861(4) A, H1���O3: 2.01 A and
�
N1---- H1���O3: 169 (� x + 1, � y + 1/2, � z + 1/2)].
19. Stewart, J.J.P. QCPE program no. 455.