Journal of the American Chemical Society
Page 4 of 5
sharp decreases in the same conditions. They were just 8%, 6%
and 5% (entries 5ꢀ7 in Table 1) respectively, suggesting that large
substrates cannot enter into the porous framework of 1 for cataꢀ
lyzed reactions. These observations also indicate that the former
reactions of small substrates (entries 1ꢀ4 in Table 1) were carried
out within the framework of 1, and the MOF exhibits the size
selectivity to small and large substrates in the reactions. Thus,
remarkably high efficiency and the size selectivity to small epoxꢀ
(3) (a) Iizuka, K.; Wato, T.; Miseki, Y.; Saito, K.; Kudo, A. J. Am.
Chem. Soc. 2011, 133, 20863−20868. (b) Xie, Y.; Wang, T.ꢀT.; Liu, X.ꢀH.;
Zou, K.; Deng, W.ꢀQ. Nat. Commun. 2013, 4, 1960. (c) Tu, W.; Zhou, Y.;
Zou, Z. Adv. Mater. 2014, 26, 4607–4626. (d) Lin, S.; Diercks, C. S.;
Zhang, Y.ꢀB.; Kornienko, N.; Nichols, E. M.; Zhao, Y.; Paris, A. R.; Kim,
D.; Yang, P.; Yaghi, O. M.; Chang, C. J. Science 2015, 349, 1208ꢀ1213.
1
2
3
4
5
6
7
8
9
1
1
1
1
1
1
1
1
1
1
2
2
2
2
2
2
2
2
2
2
3
3
3
3
3
3
3
3
3
3
4
4
4
4
4
4
4
4
4
4
5
5
5
5
5
5
5
5
5
5
6
(4) (a) Sculley, J.; Yuan, D.; Zhou, H.ꢀC. Energy Environ. Sci. 2011, 4,
2721–2735. (b) Suh, M. P.; Park, H. J.; Prasad T. K.; Lim, D.ꢀW. Chem.
Rev. 2012, 112, 782ꢀ835.
ides on catalytic CO cycloaddition confirm that MOF 1 is a suitꢀ
able heterogeneous catalyst for carbon fixation.
(5) (a) He, Y.; Zhou, W.; Yildirim, T. Chen, B. Energy Environ. Sci.
2013, 6, 2735ꢀ2744. (b) He, Y.; Zhou, W.; Qiand, G.; Chen, B. Chem. Soc.
Rev. 2014, 43, 5657ꢀ5678.
2
In summary, we have synthesized a triazoleꢀcontaining ocꢀ
tcarboxylate linker by versatile “click chemistry”, and subseꢀ
quently it has been utilized for the construction of a highly porous
MOF with Cu ions. The constructed MOF incorporating both
exposed metal sites and nitrogenꢀrich triazole groups presents a
(6) (a) Xiang, S.ꢀC.; Zhang, Z.; Zhao, C.ꢀG.; Hong, K.; Zhao, X.; Ding,
0
1
2
3
4
5
6
7
8
9
0
1
2
3
4
5
6
7
8
9
0
1
2
3
4
5
6
7
8
9
0
1
2
3
4
5
6
7
8
9
0
1
2
3
4
5
6
7
8
9
0
D.ꢀR.; Xie, M.ꢀH.; Wu, C.ꢀD.; Das, M. C.; Gill, R.; Thomas, K. M.; Chen,
B. Nat. Commum. 2011, 2, 204. (b) Wu, H.; Gong, Q.; Olson, D. H.; Li, J.
Chem. Rev. 2012, 112, 836ꢀ868.
(7) (a) Zhang, T.; Lin, W. Chem. Soc. Rev. 2014, 43, 5982ꢀ5993. (b)
Chughtai, A. H.; Ahmad, N.; Younus, H. A.; Laypkov, A.; Verpoort, F.
Chem. Soc. Rev. 2015, 44, 6804ꢀ6849.
high affinity to CO , which has been clearly verified by gas adꢀ
2
sorption and Raman spectral detections. The inherent CO adsorbꢀ
2
(8) (a) Song, J.; Zhang, Z.; Hu, S.; Wu, T.; Jiang, T.; Han, B. Green
Chem. 2009, 11, 1031–1036. (b) Miralda, C. M.; Macias, E. E.; Zhu, M.;
Ratnasamy, P.; Carreon, M. A. ACS Catal. 2012, 2, 180−183. (c) Zhou, X.;
Zhang, Y.; Yang, X.; Zhao, L.; Wang, G. J. Mol. Catal. A: Chem. 2012,
361–362, 12–16. (d) Cho, H.ꢀY.; Yang, D.ꢀA.; Kim, J.; Jeong, S.ꢀY.; Ahn,
W.ꢀS. Catal. Today 2012, 185, 35–40. (e) Zalomaeva, O. V.; Chibiryaev,
A. M.; Kovalenko, K. A.; Kholdeeva, O. A.; Balzhinimaev, B. S.; Fedin,
V. P. J. Catal. 2013, 298, 179–185. (f) Feng, D.; Chung, W.ꢀC.; Wei, Z.;
Gu, Z.ꢀY.; Jiang, H.ꢀL.; Chen, Y.ꢀP.; Darensbourg, D. J.; Zhou, H.ꢀC. J.
Am. Chem. Soc. 2013, 135, 17105−17110. (g) Gao, W.ꢀY.; Chen, Y.; Niu,
Y.; Williams, K.; Cash, L.; Perez, P. J.; Wojtas, L.; Cai, J.; Chen, Y.ꢀS.;
Ma, S. Angew. Chem. Int. Ed. 2014, 53, 2615–2619. (h) Beyzavi, M. H.;
Klet, R. C.; Tussupbayev, S.; Borycz, J.; Vermeulen, N. A.; Cramer, C. J.;
Stoddart, J. F.; Hupp, J. T.; Farha, O. K. J. Am. Chem. Soc. 2014, 136,
15861−15864. (i) Zheng, J.; Wu, M.; Jiang, F.; Su, W.; Hong, M. Chem.
Sci. 2015, 6, 3466–3470. (j) Han, X.; Wang, X.ꢀJ.; Li, P.ꢀZ.; Zou, R.; Li,
M.; Zhao, Y. CrystEngComm 2015, 17, 8596ꢀ8601.
ability, the exposed Lewis acid metal sites, and the confinement
of the pore size make the MOF a promising heterogeneous cataꢀ
lyst for CO chemical conversion with small substrates, which
2
have been confirmed by remarkably high efficiency and size seꢀ
lectivity on catalytic CO cycloaddition with epoxides. This reꢀ
2
search sheds light on how the framework affinity of MOFs to CO2
and the pore size dependence toward substrates could influence
the efficiency of CO chemical conversion during the process of
2
the carbon fixation.
ASSOCIATED CONTENT
Supporting Information
Experimental details. CCDC 1436567. This material is available
free of charge via the Internet at http://pubs.acs.org.
(9) MOF 1 in the main text can be cited as NTU-180.
(10) (a) Vogiatzis, K. D.; Mavrandonakis, A.; Klopper, W.; Froudakis,
AUTHOR INFORMATION
G. E. ChemPhysChem 2009, 10, 374–383. (b) Li, P.ꢀZ.; Zhao, Y. Chem.
Asian J. 2013, 8, 1680ꢀ1691.
Corresponding Author
(11) (a) Vaidhyanathan, R.; Iremonger, S. S.; Shimizu, G. K. H.; Boyd,
zhaoyanli@ntu.edu.sg; rzou@pku.edu.cn
P. G.; Alavi, S.; Woo, T. K. Science 2010, 330, 650ꢀ653. (b) Zheng, B.;
Bai, J.; Duan, J.; Wojtas, L.; Zaworotko, M. J. J. Am. Chem. Soc. 2011,
133, 748−751.
(12) (a) Wang, X.ꢀJ.; Li, P.ꢀZ.; Chen, Y.; Zhang, Q.; Zhang, H.; Chan,
X. X.; Ganguly, R.; Li, Y.; Jiang, J.; Zhao, Y. Sci. Rep. 2013, 3, 1149. (b)
Li, P.ꢀZ.; Wang, X.ꢀJ.; Zhang, K.; Nalaparaju, A.; Zou, R.; Zou, R.; Jiang,
J.; Zhao, Y. Chem. Commun. 2014, 50, 4683ꢀ4685.
(13) (a) Nnagai, A.; Guo, Z.; Feng, X.; Jin, S.; Chen, X.; Ding, X.;
Jiang, D. Nat. Commun. 2011, 2, 536. (b) Liu, C.; Li, T.; Rosi, N. L. J.
Am. Chem. Soc. 2012, 134, 18886−18888. (c) Li, P.ꢀZ.; Wang, X.ꢀJ.; Tan,
S.Y.; Ang, C.Y.; Chen, H.ꢀZ. Liu, J.; Zou, R.ꢀQ.; Zhao, Y. Angew. Chem.
Int. Ed. 2015, 54, 12748ꢀ12752.
Author Contributions
§
P.ꢀZ. Li, X.ꢀJ. Wang and J. Liu contributed equally to this work.
Notes
The authors declare no competing financial interest.
ACKNOWLEDGMENT
This research was financially supported by the National Research
Foundation (NRF), Prime Minister’s Office, Singapore through its
Campus for Research Excellence and Technological Enterprise
(14) (a) Chui, S. S.ꢀY.; Lo, S. M.ꢀF.; Charmant, J. P. H.; Orpen, A. G.;
Williams, I. D. Science, 1999, 283, 1148ꢀ1150. (b) Rao, X.; Cai, J.; Yu, J.;
He, Y.; Wu, C.; Zhou, W.; Yildirim, T.; Chen, B.; Qian, G. Chem. Com-
mun. 2013, 49, 6719ꢀ6721.
(CREATE) Program—Singapore Peking University Research
Centre for a Sustainable LowꢀCarbon Future, and the NTUꢀ
A*Star Silicon Technologies Centre of Excellence under grant
No. 11235100003. R. Z. thanks the National Natural Science
Foundation of China (no. 51322205, 21371014, and 11175006)
for the financial support.
(15) (a) Perry IV, J. J.; Perman, J. A.; Zaworotko, M. J. Chem. Soc. Rev.
2
2
2
009, 38, 1400–1417. (b) Janiak, C.; Vieth, J. K.; New J. Chem. 2010, 34,
366ꢀ2388. (c) Li, M.; Li, D.; O’Keeffe, M.; Yaghi, O. M. Chem. Rev.
014, 114, 1343−1370.
(
16) Spek, A. Acta Crystallogr, Sect. D 2009, 65, 148ꢀ155.
(17) Sing, K. S. W.; Everett, D. H.; Haul, R. A. W.; Moscou, L.; Pierotꢀ
ti, P. A.; Rouquerol, J.; Siemieniewska, T. Pure Appl. Chem. 1985, 57,
03–619.
18) Prasad, T. K.; Hong, D. H.; Suh, M. P. Chem. Eur. J. 2010, 16,
REFERENCES
6
(1) (a) Li, J.ꢀR.; Ma, Y.; McCarthy, M. C.; Sculley, J.; Yu, J.; Jeong,
H.ꢀK.; Balbuen, P. B.; Zhou, H.ꢀC. Coord. Chem. Rev. 2011, 255, 1791ꢀ
(
14043–14050.
1
1
823. (b) Bae, Y.ꢀS.; Snurr, R. Q. Angew. Chem. Int. Ed. 2011, 50, 11586ꢀ
1596. (c) Sumida, K.; Rogow, D. L.; Mason, J. A.; McDonald, T. M.;
(19) (a) Nijem, N.; Thissen, P.; Yao, Y.; Longo, R. C.; Roodenko, K.;
Wu, H.; Zhao, Y.; Cho, K.; Li, J.; Langreth, D. C.; Chabal, Y. J. J. Am.
Chem. Soc. 2011, 132, 12849–12857. (b) Kanoo, P.; Reddy, S. K.; Kumari,
G.; Haldar, R.; Narayana, C.; Balasubramanian, S.; Maji, T. K. Chem.
Commun. 2012, 48, 8487–8489.
Bloch, E. D.; Herm, Z. R.; Bae, T.ꢀH.; Long, J. R. Chem. Rev. 2012, 112,
724ꢀ781. (d) Liu, J.; Thallapally, P. K.; McGrail, B. P.; Brown, D. R.; Liu,
J. Chem. Soc. Rev. 2012, 41, 2308ꢀ2322.
(2) (a) Gomes, C. D. N.; Jacquet, O.; Villiers, C.; Thuery, P.; Ephriꢀ
(20) North, M.; Pasquale, R.; Young, C. Green Chem. 2010, 12, 1514–
tikhine, M.; Cantat, T. Angew. Chem. Int. Ed. 2012, 51, 187ꢀ190. (b) Lu,
X.ꢀB.; Darensbourg, D. J. Chem. Soc. Rev. 2012, 41, 1462–1484.
1
539.
4
ACS Paragon Plus Environment