Please do not adjust margins
ChemComm
Page 4 of 5
COMMUNICATION
Journal Name
assumption is further validated by elucidating the solid-state
morphologies of PDI-TEOAm-C2OH-derived assemblies. As expected
from the lack of ExBW increase reported for redox-treated PDI-
TEOAm-C2OH assembly, no distinguishable organized domains are
observed in the SEM images shown in Fig. S18-S22 where globular,
amorphous aggregates best characterize the solid-state morphology
of this class of assembly.
Conflicts of interest
There are no conflicts to declare.
DOI: 10.1039/C9CC01939A
Notes and references
1.Moulin, E.; Niess, F.; Maaloum, M.; Buhler, E.; Nyrkova, I.;
Giuseppone, N. Angew. Chem. Int. Ed. 2010, 49, 6974-6978.
2.vanꢀderꢀWeegen, R.; Teunissen Abraham, J. P.; Meijer, E. W. Chem.
Eur. J. 2017, 23, 3773-3783.
3.Liu, C.; Liu, K.; Klütke, J.; Ashcraft, A.; Steefel, S.; Olivier, J.-H. J.
Mater. Chem. C 2018, 6, 11980-11991.
4.Mabesoone, M. F. J.; Markvoort, A. J.; Banno, M.; Yamaguchi, T.;
Helmich, F.; Naito, Y.; Yashima, E.; Palmans, A. R. A.; Meijer, E. W. J.
Am. Chem. Soc. 2018, 140, 7810-7819.
5.Fukui, T.; Kawai, S.; Fujinuma, S.; Matsushita, Y.; Yasuda, T.;
Sakurai, T.; Seki, S.; Takeuchi, M.; Sugiyasu, K. Nat. Chem. 2016, 9,
493.
6.Micali, N.; Engelkamp, H.; van Rhee, P. G.; Christianen, P. C. M.;
Scolaro, L. M.; Maan, J. C. Nat. Chem. 2012, 4, 201.
7.Dhiman, S.; Jain, A.; George, S. J. Angew. Chem. Int. Ed. 2017, 56,
1329-1333.
8.Dhiman, S.; Sarkar, A.; George, S. J. RSC Advances 2018, 8, 18913-
18925.
9.De Greef, T. F. A.; Smulders, M. M. J.; Wolffs, M.; Schenning, A. P.
H. J.; Sijbesma, R. P.; Meijer, E. W. Chem. Rev. 2009, 109, 5687-5754.
10.Korevaar, P. A.; de Greef, T. F. A.; Meijer, E. W. Chem. Mater.
2014, 26, 576-586.
11.Ostroverkhova, O. Chem. Rev. 2016, 116, 13279-13412.
12.Martinez, C. R.; Iverson, B. L. Chem. Sci. 2012, 3, 2191-2201.
13.Raju, R. K.; Bloom, J. W. G.; Wheeler, S. E. J. Chem. Theory Comput.
2013, 9, 3479-3490.
Comparing the photophysical properties and solid-state
morphologies presented for PDI-C3Im-C2OH superstructure with
those of PDI-TEOAm-C2OH assembly allows the elucidation of critical
parameters that need to be considered during a redox-assisted
assembly process. As indicated by the temperature-dependent
aggregation and the reductive titration experiments, TEO side chains
flanked on PDI cores confers hydrophilicity to PDI-TEOAm-C2OH
building blocks that prevent access to superstructure conformation,
during the n-doping process, comparable to that of PDI-C3Im-C2OH.
Consequently, while recovery of the neutral ground state of the PDI-
C3Im-C2OH n-doped intermediate is accompanied by an increase of
ExBW, no apparent change of photophysical properties is evidenced
in redox-treated PDI-TEOAm-C2OH assembly. This observation
underscores the pivotal role played by the n-doped intermediates.
We postulate that upon electron injection, electrostatic repulsion
between negatively charged PDI-TEOAm-C2OH hydrophilic building
blocks may compromise the assembly integrity. Furthermore, the
suspected conformational change of the PDI-C3Im-C2OH
superstructure, signaled by the increase of ExBW, is further validated
by the formation of mesoscale 1D hierarchical materials.
In conclusion, we have demonstrated that the initial
photophysical and solid-state properties of PDI-derived
supramolecular polymers can be modified by exploiting redox-
assisted assembly. Analysis of the reductive titration, ExBW, and
morphological attributes of PDI-C3Im-C2OH and PDI-TEOAm-C2OH
assemblies before and after redox treatment has unraveled pivotal
structural and electronic parameters that enable the evolution of
structure-function relationships. Because reductive titrations of
initially prepared PDI-C3Im-C2OH assemblies demonstrate a 70-meV
bathochromic shift of the π-anion stack spectral signature when
compared to that of PDI-TEOAm-C2OH assemblies, the increase of
ExBW, exclusively evidenced in PDI-C3Im-C2OH superstructures, can
be correlated to the electronic properties of the n-doped
intermediates. To complement the change of electronic function,
redox-assisted assembly of the PDI-C3Im-C2OH supramolecular
polymer enforces the formation of highly ordered 1D mesoscale
materials that span the nano-to-microscale dimensions. We
postulate that n-doping the initially prepared PDI-C3Im-C2OH
assembly engenders a superstructure conformational change that
assists the formation of hierarchical supramolecular architectures.
This work provides a new tool to navigate the self-assembly free
energy landscape and create semiconducting superstructures
relevant to optoelectronic applications.
14.Kaufmann, C.; Bialas, D.; Stolte, M.; Würthner, F. J. Am. Chem. Soc.
2018, 140, 9986-9995.
15.Hestand, N. J.; Spano, F. C. Acc. Chem. Res. 2017, 50, 341-350.
16.Görl, D.; Zhang, X.; Würthner, F. Angew. Chem. Int. Ed. 2012, 51,
6328-6348.
17.Sorrenti, A.; Leira-Iglesias, J.; Sato, A.; Hermans, T. M. Nat.
Commun. 2017, 8, 15899.
18.Leira-Iglesias, J.; Tassoni, A.; Adachi, T.; Stich, M.; Hermans, T. M.
Nat. Nanotechnol. 2018, 13, 1021-1027.
19.Liu, K.; Levy, A.; Liu, C.; Olivier, J.-H. Chem. Mater. 2018, 30, 2143-
2150.
20.Leira-Iglesias, J.; Sorrenti, A.; Sato, A.; Dunne, P. A.; Hermans, T.
M. Chem. Commun. 2016, 52, 9009-9012.
21.Vura-Weis, J.; Ratner, M. A.; Wasielewski, M. R. J. Am. Chem. Soc.
2010, 132, 1738-1739.
22.Marcon, R. O.; Brochsztain, S. J. Phys. Chem. A 2009, 113, 1747-
1752.
23.Graf, D. D.; Duan, R. G.; Campbell, J. P.; Miller, L. L.; Mann, K. R. J.
Am. Chem. Soc. 1997, 119, 5888-5899.
24.Miller, L. L.; Mann, K. R. Acc. Chem. Res. 1996, 29, 417-423.
25.Zhong, C. J.; Kwan, W. S. V.; Miller, L. L. Chem. Mater. 1992, 4,
1423-1428.
26.Wu, Y.; Frasconi, M.; Gardner, D. M.; McGonigal, P. R.; Schneebeli,
S. T.; Wasielewski, M. R.; Stoddart, J. F. Angew. Chem. Int. Ed. 2014,
53, 9476-9481.
27.Spano, F. C.; Silva, C. Annu. Rev. Phys. Chem. 2014, 65, 477-500.
28.Clark, J.; Chang, J.-F.; Spano, F. C.; Friend, R. H.; Silva, C. Appl. Phys.
Lett. 2009, 94, 163306.
This work was supported by the University of Miami. Additional
support provided by the Arnold and Mabel Beckman Foundation (BYI
Award 2018) is gratefully acknowledged. We thank Brianna Bernard
and Victor Paulino for their constructive comments.
4 | J. Name., 2012, 00, 1-3
This journal is © The Royal Society of Chemistry 20xx
Please do not adjust margins