10.1002/anie.201812140
Angewandte Chemie International Edition
COMMUNICATION
Hashmi, Angew. Chem. Int. Ed. 2014, 53, 3715–3719; Angew. Chem.
2014, 126, 3789–3793; d) C. A. Witham, P. Mauleón, N. D. Shapiro, B.
D. Sherry, F. D. Toste, J. Am. Chem. Soc. 2007, 129, 5838–5839.
For review: W. Zi, F. D. Toste, Chem. Soc. Rev. 2016, 45, 4567–4589.
nitrones to afford dihydrofuran-3-one derivatives in good yields
with excellent diastereoselectivities and enantioselectivities. This
novel pattern of alkyne transformation involving chemical bond
cleavage, fragment modification and reassembly process
provides an atom- and step-economic method with stable,
inexpensive, and readily available materials. In comparison with
disclosed asymmetric gold catalysis approaches, this work
presents the first example of catalytic asymmetric trapping of a
gold enolate in alkyne oxidations via an α-oxo gold carbene
route, and could inspire more discoveries in gold-catalyzed
asymmetric alkyne transformations.
[9]
[10] a) D. J. Gorin, F. D. Toste, Nature 2007, 446, 395–403; b) A. S. K.
Hashmi, Angew. Chem. Int. Ed. 2010, 49, 5232–5241; Angew. Chem.
2010, 122, 5360–5369; c) A. Fuürstner, P. W. Davies, Angew. Chem.
Int. Ed. 2007, 46, 3410–3449; Angew. Chem. 2007, 119, 3478–3519.
[11] a) R. J. Phipps, G. L. Hamilton, F. D. Toste, Nat. Chem. 2012, 4, 603–
614; b) M. Mahlau, B. List, Angew. Chem. Int. Ed. 2013, 52, 518–533;
Angew. Chem. Int. Ed. 2013, 125, 540–556; c) Brak, K.; Jacobsen, E.
Angew. Chem. Int. Ed. 2013, 52, 534–561; Angew. Chem. 2013, 52,
558–588.
[12] a) Y.-M. Wang, A. D. Lackner, F. D. Toste, Acc. Chem. Res. 2014, 47,
889–901; b) S. Sengupta, X. Shi, ChemCatChem 2010, 2, 609–619.
[13] For the gold (I)/organo relay catalysis: a) Z. Han, D. Chen, Y. Wang, L.
Gong, J. Am. Chem. Soc. 2012, 134, 6532–6535; b) Z. Han, H. Xiao, X.
Chen, L. Gong, J. Am. Chem. Soc. 2009, 131, 9182–9183; c) M. E.
Muratore, C. A. Holloway, A. W. Pilling, R. I. Storer, G. Trevitt, D. J.
Dixon, J. Am. Chem. Soc. 2009, 131, 10796-10797; for dual gold
catalysis: d) A. S. K. Hashmi, Acc. Chem. Res. 2014, 47, 864–876.
[14] a) Y. Zheng, J. Mao, Y. Weng, X. Zhang, X. Xu, Org. Lett. 2015, 17,
5638−5641; b) R. Yao, G. Rong, B. Yan, L. Qiu, X. Xu, ACS Catal.
2016, 6, 1024−1027; c) J. Cai, B. Wu, G. Rong, C. Zhang, L. Qiu, X. Xu,
Org. Lett. 2018, 20, 2733−2736.
Acknowledgements
Support for this research from the National Natural Science
Foundation of China (21602148, 21332003) and the Program for
Guangdong Introducing Innovative and Entrepreneurial Teams
(No. 2016ZT06Y337) are greatly acknowledged.
Conflict of interest
The authors declare no conflict of interest.
[15] For Zn-catalyzed enolate formation followed by Aldol addition, see: A.
M. Jadhav, V. V. Pagar, D. B. Huple, R.-S. Liu, Angew. Chem. Int. Ed.
2015, 54, 3812−3816; Angew. Chem. 2015, 127, 3883−3887.
[16] For reviews: a) X. Guo, W. Hu, Acc. Chem. Soc. 2013, 46, 2427−2440;
b) D. Chen, Z. Han, X. Zhou, L. Gong, Acc. Chem. Res. 2014,
47, 2365−2377.
Keywords: cooperative catalysis • gold catalysis • carbene •
alkyne oxidation • enantioselective Mannich-type addition
[1]
For reviews: a) Z. Zheng, Z. Wang, Y. Wang, L. Zhang, Chem. Soc.
Rev. 2016, 45, 4448−4458; b) D. Qian, J. Zhang, Chem. Soc. Rev.
2015, 44, 677−698; c) A. S. K. Hashmi, Chem. Rev. 2007, 107,
3180−3211; d) R. Dorel, A. M. Echavarren, Chem. Rev. 2015, 115,
9028−9072.
[17] Selected examples: a) G. Xiao, T. Chen, C. Ma, D. Xing, W. Hu, Org.
Lett. 2018, 20, 4531–4535; b) D. Zhang, J. Zhou, F. Xia, Z. Kang, W.
Hu, Nat Commun. 2015, 6, 5801–5088; c) W. Hu, X. Xu, J. Zhou, W.
Liu, H. Huang, J. Hu, L. Yang, L. Gong, J. Am. Chem. Soc. 2008, 130,
7782–7783; d) D. Chen, F. Zhao, Y. Hu, L. Gong, Angew. Chem. Int.
Ed. 2014, 53, 10763–10767; Angew. Chem. 2014, 126, 10939–10943.
[18] During the time we are preparing the manuscript, Prof. Rai-Shung Liu
has reported a racemic version of analogous reaction: R. L. Sahani, M.
D. Patil, S. B. Wagh, R. Liu, Angew. Chem. Int. Ed. 2018, 57, asap;
Angew. Chem. 2018, 130, asap, 10.1002/anie.201806883.
[2]
[3]
a) L. Zhang, Acc. Chem. Res. 2014, 47, 877−888; b) H.-S. Yeom, S.
Shin, Acc. Chem. Res. 2014, 47, 966−977.
a) S. Bhunia, S. Ghorpade, D. B. Huple, R.-S. Liu, Angew. Chem. Int.
Ed. 2012, 51, 2939−2942; Angew. Chem. 2012, 124, 2993−2996; b) Y.
Wang, Z. Zheng and L. Zhang, J. Am. Chem. Soc. 2015, 137,
5316−5319.
[4]
[5]
a) Y. Wang, K. Ji, S. Lan, L. Zhang, Angew. Chem. Int. Ed. 2012, 51,
1915−1918; Angew. Chem. 2012, 124, 1951−1954; b) K. Graf, C. L.
Rühl, M. Rudolph, F. Rominger, A. S. K. Hashmi, Angew. Chem. Int. Ed.
2013, 52, 12727−12731; Angew. Chem. 2013, 125, 12960−12964; c) G.
Henrion, T. E. J. Chavas, X. L. Goff, F. Gagosz, Angew. Chem. Int. Ed.
2013, 52, 6277−6282; Angew. Chem. 2013, 125, 6397−6402; d) N. D.
Shapiro, F. D. Toste, J. Am. Chem. Soc. 2007, 129, 4160−4161.
a) L. Ye, L. Cui, G. Zhang, L. Zhang, J. Am. Chem. Soc. 2010, 132,
3258−3259; b) L. Ye, W. He, L. Zhang, J. Am. Chem. Soc. 2010, 132,
8550−8551; c) C. Shu, L. Li, X.-Y. Xiao, Y.-F. Yu, Y.-F. Ping, J.-M.
Zhou, L.-W. Ye, Chem. Commun. 2014, 50, 8689−8692; d) A.
Mukherjee, R. B. Dateer, R. Chaudhuri, S. Bhunia, S. N. Karad, R.-S.
Liu, J. Am. Chem. Soc. 2011, 133, 15372–15375.
[19] a) H. S. Yeom, J. E. Lee, S. Shin, Angew. Chem. Int. Ed. 2008, 47,
7040–7043; Angew. Chem. 2008, 120, 7148–7151; b) H. S. Yeom, Y.
Lee, J. Jeong, E. So, S. Hwang, J. E. Lee, S. S. Lee, S. Shin, Angew.
Chem. Int. Ed. 2010, 49, 1611–1614; Angew. Chem. 2010, 122, 1655–
1658.
[20] Selected examples: a) S. Yang, T. Chan, J. Terracciano, E. Boehm, R.
Patel, G. Chen, D. Loebenberg, M. Patel, V. Gullo, B. Pramanik, M.
Chu, J. Nat. Prod. 2009, 72, 484–487; b) M. Ishikawa, T. Ninomiya, H.
Akabane, N. Kushida, G. Tsujiuchi, M. Ohyama, S. Gomi, K. Shito, T.
Murata, Bioorg. Med. Chem. Lett. 2009, 19, 1457–1460; c) A. B.
Petersen, N. S. Andersen, G. Konotop, N. H. M. Hanafiah, M. S. Raab,
A. Krämer, M. H. Clausen, Eur. J. Med. Chem. 2017, 130, 240–247.
[21] a) B. Jiang, J. Liu, S. Zhao, Org. Lett. 2002, 4, 3951–3953; b) Y. Li, K. J.
Hale, Org. Lett. 2007, 9, 1267–1270; c) K. C. Nicolaou, T. R. Wu, D.
Sarlah, D. M. Shaw, E. Rowcliffe, D. R. Burton, J. Am. Chem. Soc.
2008, 130, 11114–11121.
[6]
[7]
[8]
a) K. Ji, Z. Zheng, Z. Wang, L. Zhang, Angew. Chem. Int. Ed. 2015, 54,
1245–1249; Angew. Chem. 2015, 127, 1261–1265; b) D. Qian, H. Hu,
F. Liu, B. Tang, W. Ye, Y. Wang, J. Zhang, Angew. Chem. Int. Ed. 2014,
53, 13751–13755; Angew. Chem. 2014, 126, 13971–13975.
a) B. Lu, Y. Li, Y. Wang, D. H. Aue, Y. Luo, L. Zhang, J. Am. Chem.
Soc. 2013, 135, 8512–8524; b) S. K. Pawar, C.-D. Wang, S. Bhunia, A.
M. Jadhav, R.-S. Liu, Angew. Chem. Int. Ed. 2013, 52, 7559–7563;
Angew. Chem. 2013, 125, 7707–7711.
[22] CCDC 1847840 contain the supplementary crystallographic data for 3b.
These data can be obtained free of charge from the Cambridge
[23] Y. Ren, S. Zhu, Q. Zhou, Org. Biomol. Chem. 2018, 16, 3087–3094.
[24] a) K. B. Simonsen, P. Bayón, R. G. Hazell, K. V. Gothelf, K. N.
Jørgensen, J. Am. Chem. Soc. 1999, 121, 3845–3853.
a) D. Vasu, H.-H. Hung, S. Bhunia, S. A. Gawade, A. Das, R.-S. Liu,
Angew. Chem. Int. Ed. 2011, 50, 6911–6914; Angew. Chem. 2011, 123,
7043–7046; b) S. Ghorpade, M.-D. Su, R.-S. Liu, Angew. Chem. Int. Ed.
2013, 52, 4229–4234; Angew. Chem. 2013, 125, 4323–4328; c) T.
Wang, S. Shi, M. M. Hansmann, E. Rettenmeier, M. Rudolph, A. S. K.
[25] B. M. Trost, T. Saget, C. Hung, J. Am. Chem. Soc. 2016, 138, 3659–
3662.
This article is protected by copyright. All rights reserved.