Journal of the American Chemical Society
Communication
treatment with HNO that allows surface oxidation of the
fluorophore-free CNP400 (abbreviated as ox-CNP400). The
ox-CNP400 exhibit excitation-dependent emission PL within
A.K. dedicate this Communication to Prof. Colin Booth
(Manchester University) on the occasion of his 80th birthday.
3
REFERENCES
the range 375 < λ < 600 nm (SI Figure 13b), in line with the
ex
■
observations presented above (for λex < 375 nm the PL
intensity is too low to be measured).
Figure 4 summarizes our findings. The schematic correlates
the PL intensity (and Φ) of the species obtained during
(1) Mattoussi, H.; Mauro, M.; Goldman, E. R.; Anderson, G. P.;
Sundar, V. C.; Mikulec, F. V.; Bawendi, M. G. J. Am. Chem. Soc. 2000,
1
(
2
22, 12142.
2) Wu, B. Y.; Wang, H. F.; Chen, J. T.; Yan, X. P. J. Am. Chem. Soc.
011, 133, 686.
(3) Qu, L.; Peng, X. J. Am. Chem. Soc. 2002, 124, 2049.
(4) Li, M.; Selvin, P. R. J. Am. Chem. Soc. 1995, 117, 8132.
(5) Burns, A.; Ow, H.; Wiesner, U. Chem. Soc. 2006, 35, 1028.
(6) Baker, S. N.; Baker, G. A. Angew. Chem., Int. Ed. 2010, 49, 6726.
(7) Yang, S.-T.; Cao, L.; Luo, P. G.; Lu, F.; Wang, X.; Wang, H.;
Meziani, M. J.; Liu, Y.; Qi, G.; Sun, Y. P. J. Am. Chem. Soc. 2009, 131,
1308.
8) Yang, S.-T.; Wang, X.; Wang, H.; Lu, F.; Luo, P. G.; Cao, L.;
1
(
Meziani, M. J.; Liu, J.-H.; Liu, Y.; Chen, M.; Huang, Y.; Sun, Y.-P. J.
Phys. Chem. C. 2009, 18110.
(9) Sun, Y. P.; Zhou, B.; Lin, Y.; Wang, W.; Fernando, K. A. S.;
Pathak, P.; Meziani, M. J.; Harruff, B. A.; Wang, X.; Wang, H.; Luo, P.
G.; Yang, H.; Kose, M. E.; Chen, B.; Veca, L. M.; Xie, S. Y. J. Am.
Chem. Soc. 2006, 128, 7756.
Figure 4. Schematic representation of the emission characteristics of
three photoactive species produced from the thermal treatment of
mixture of CA and EA. During pyrolysis, the organic fluorophores
(
10) Zhou, J.; Booker, C.; Li, R.; Zhou, X.; Sham, T. K.; Sun, X.;
Ding, Z. J. Am. Chem. Soc. 2007, 129, 744.
11) Cao, L.; Wang, X.; Meziani, M. J.; Lu, F.; Wang, H.; Luo, P. G.;
(
(blue groups) are consumed for the buildup of the carbogenic core
Lin, Y.; Harruff, B. A.; Veca, L. M.; Murray, D.; Xie, S. Y.; Sun, Y. P. J.
Am. Chem. Soc. 2007, 129, 11318.
(black sphere) so that the PL component that corresponds to the
carbogenic core (black bars) increases at the expenses of the
component that arises from the organic fluorophores (blue bars).
(
12) Pan, D.; Zhang, J.; Li, Z.; Wu, C.; Yan, X.; Wu, M. Chem.
Commun. 2010, 46, 3681.
13) Ray, S. C.; Saha, A.; Jana, N. R.; Sarkar, R. J. Phys. Chem. C.
009, 113, 18549.
14) Bourlinos, A. B.; Stassinopoulos, A.; Anglos, D.; Zboril, R.;
Karakassides, M.; Giannelis, E. P. Small 2008, 4, 455.
15) Bourlinos, A. B.; Stassinopoulos, A.; Anglos, D.; Zboril, R.;
(
2
(
different stages of pyrolysis. At first a CNP precursor with a
strongly intense PL spectrum and high Φ is formed. The PL
spectrum is mostly due to amide-containing fluorophores (blue
groups). As the pyrolysis proceeds to higher temperatures a
carbogenic core (black spheres) is formed at the expense of the
molecular fluorophores. Eventually, CNPs that exhibit mostly
or exclusively PL arising from carbogenic cores are obtained.
The well-established quenching efficiency of graphitic particles
(
Georgakilas, V.; Giannelis, E. P. Chem. Mater. 2008, 20, 4539.
(16) Wang, F.; Pang, S.; Wang, L.; Li, Q.; Kreiter, M.; Liu, C.-Y.
Chem. Mater. 2010, 22, 4528.
(17) Peng, H.; Travas-Sejdic, J. Chem. Mater. 2009, 21, 5563.
34
(
18) Zhu, H.; Wang, X.; Li, Y.; Wang, Z.; Yanga, F.; Yang, X. Chem.
Commun. 2009, 5118.
19) Liu, R.; Wu, D.; Liu, S.; Koynov, K.; Knoll, W.; Li, Q. Angew.
Chem., Int. Ed. 2009, 48, 4598.
20) Liu, H.; Ye, T.; Mao, C. Angew. Chem., Int. Ed. 2007, 46, 6473.
with respect to the emission of neighboring or absorbed dyes
might account to some extent for the suppressed emission of
the organic fluorophores observed for CNP230 and CNP300.
(
(
ASSOCIATED CONTENT
■
(21) Schwarzinger, S.; Kroon, G. J. A.; Foss, T. R.; Chung, J.; Wright,
P. E.; Dyson, H. J. J. Am. Chem. Soc. 2001, 123, 2970.
(22) Buchwalter, L. P. J. Vac. Sci. Technol. 1989, 7, 1772.
*
S
Supporting Information
Detailed experimental procedures and characterization by 14N,
(23) Mitchell, J. A.; Reid, E. E. J. Am. Chem. Soc. 1931, 53, 1879.
(24) Jursic, B. S.; Zdravkovski, Z. Synth. Commun. 1993, 23, 2761.
(25) Goossen, L. J.; Ohlmann, D. M.; Lange, P. P. Synthesis Stuttgart
1
13
H, and C NMR, XPS, UV−vis, FTIR, and Raman spectra,
2009, 160.
(26) Dellinger, J. A.; Roberts, C. W. Polym. Lett. 1976, 14, 167.
(
27) Seijas, J. A.; Vazquez-Tato, M. P.; Montserrat-Martinez, M.;
AUTHOR INFORMATION
Nunez-Corredoira, G. J. Chem. Res. (S) 1999, 420.
28) Sigel, H.; Martin, R. B. Chem. Rev. 1982, 82, 385.
(
(29) Lodeiro, C.; Capelo, J. L.; Mejuto, J. C.; Oliveira, E.; Santos, H.
M.; Pedras, B.; Nunez, C. Chem. Soc. Rev. 2010, 39, 2948.
Author Contributions
(30) Niyogi, S.; Bekyarova, E.; Itkis, M. E.; Zhang, H.; Shepperd, K.;
†
These authors contributed equally to this work.
Hicks, J.; Sprinkle, M.; Berger, C.; Lau, C. N.; de Heer, W. A.; Conrad,
E. H.; Haddon, R. C. Nano Lett. 2010, 10, 4061.
ACKNOWLEDGMENTS
(31) Tuinstra, F.; Koenig, J. L. Bull. Am. Phys. Soc. 1970, 15, 296.
■
(
32) Eda, G.; Lin, Y.-Y.; Mattevi, C.; Yamaguchi, H.; Hsin-An Chen,
H.-A.; Chen, I.-S.; Chen, C. W.; Chhowalla, M. Adv. Mater. 2010, 22,
05.
33) Loh, K. P.; Bao, Q. L.; Eda, G.; Chhowalla, M. Nature Chem.
010, 2, 1015.
This publication is based on work supported in part by Award
No. KUS-C1-018-02 made by King Abdullah University of
Science and Technology. It is also based on work supported in
part by Torrey Pines and the Energy Materials Center at
Cornell, an Energy Frontier Research Center funded by the
U.S. Department of Energy, Office of Science, Office of Basic
Energy Sciences, under Award No. DE-SC0001086. M.J.K. and
5
(
2
(34) Kagan, M. R.; McCreery, R. L. Anal. Chem. 1994, 66, 4159.
7
50
dx.doi.org/10.1021/ja204661r | J. Am. Chem.Soc. 2012, 134, 747−750