Page 5 of 6
Journal of the American Chemical Society
(
12) Just-Baringo, X.; Albericio, F.; Alvarez, M. Thiopeptide Engi-
(24) Seebeck, F. P.; Szostak, J. W. Ribosomal Synthesis of Dehydroa-
lanine-Containing Peptides. 2006, 128, 7150.
(25) Goto, Y.; Katoh, T.; Suga, H. Flexizymes for Genetic Code Re-
programming. Nat Protoc 2011, 6, 779.
neering: a Multidisciplinary Effort Towards Future Drugs. Angew.
Chem. Int. Ed. Engl. 2014, 53, 6602.
(
1
2
3
4
5
6
7
8
9
13) Bowers, A. A.; Acker, M. G.; Koglin, A.; Walsh, C. T. Manipu-
lation of Thiocillin Variants by Prepeptide Gene Replacement: Struc-
ture, Conformation, and Activity of Heterocycle Substitution Mutants.
J. Am. Chem. Soc. 2010, 132, 7519.
(26) Asahara, H.; Chong, S. In Vitro Genetic Reconstruction of Bacte-
rial Transcription Initiation by Coupled Synthesis and Detection of
RNA Polymerase Holoenzyme. Nucleic Acids Res. 2010, 38, e141.
(27) Zhou, Y.; Asahara, H.; Gaucher, E. A.; Chong, S. Reconstitution
of Translation From Thermus Thermophilus Reveals a Minimal Set of
Components Sufficient for Protein Synthesis at High Temperatures and
Functional Conservation of Modern and Ancient Translation Compo-
nents. Nucleic Acids Res. 2012, 40, 7932.
(28) Iwane, Y.; Hitomi, A.; Murakami, H.; Katoh, T.; Goto, Y.; Suga,
H. Expanding the Amino Acid Repertoire of Ribosomal Polypeptide
Synthesis via the Artificial Division of Codon Boxes. Nat. Chem. 2016,
8, 317.
(29) Cogan, D. P.; Hudson, G. A.; Zhang, Z.; Pogorelov, T. V.; van
der Donk, W. A.; Mitchell, D. A.; Nair, S. K. Structural Insights Into
Enzymatic [4+2] Aza-Cycloaddition in Thiopeptide Antibiotic Biosyn-
thesis. Proc. Natl. Acad. Sci. U. S. A. 2017, 114, 12928.
(30) Tran, H. L.; Lexa, K. W.; Julien, O.; Young, T. S.; Walsh, C. T.;
Jacobson, M. P.; Wells, J. A. Structure-Activity Relationship and Mo-
lecular Mechanics Reveal the Importance of Ring Entropy in the Bio-
synthesis and Activity of a Natural Product. J. Am. Chem. Soc. 2017,
139, 2541.
(31) Harms, J. M.; Wilson, D. N.; Schluenzen, F.; Connell, S. R.;
Stachelhaus, T.; Zaborowska, Z.; Spahn, C. M. T.; Fucini, P. Transla-
tional Regulation via L11: Molecular Switches on the Ribosome
Turned on and Off by Thiostrepton and Micrococcin. Mol Cell 2008,
30, 26.
(32) Bewley, K. D.; Bennallack, P. R.; Burlingame, M. A.; Robison,
R. A.; Griffitts, J. S.; Miller, S. M. Capture of Micrococcin Biosyn-
thetic Intermediates Reveals C-Terminal Processing as an Obligatory
Step for in Vivo Maturation. Proc. Natl. Acad. Sci. U. S. A. 2016, 113,
12450.
(33) Schwalen, C. J.; Hudson, G. A.; Kille, B.; Mitchell, D. A. Bioin-
formatic Expansion and Discovery of Thiopeptide Antibiotics. J. Am.
Chem. Soc. 2018, 140, 9494.
(34) Hayashi, S.; Ozaki, T.; Asamizu, S.; Ikeda, H.; Omura, S.; Oku,
N.; Igarashi, Y.; Tomoda, H.; Onaka, H. Genome Mining Reveals a
Minimum Gene Set for the Biosynthesis of 32-Membered Macrocyclic
Thiopeptides Lactazoles. Chem. Biol. 2014, 21, 679.
(
14) Young, T. S.; Dorrestein, P. C.; Walsh, C. T. Codon Randomiza-
tion for Rapid Exploration of Chemical Space in Thiopeptide Antibi-
otic Variants. Chem. Biol. 2012, 19, 1600.
(15) Zhang, F.; Kelly, W. L. Saturation Mutagenesis of TsrA Ala4 Un-
veils a Highly Mutable Residue of Thiostrepton a. ACS Chem. Biol.
2
015, 10, 998.
1
1
1
1
1
1
1
1
1
1
2
2
2
2
2
2
2
2
2
2
3
3
3
3
3
3
3
3
3
3
4
4
4
4
4
4
4
4
4
4
5
5
5
5
5
5
5
5
5
5
6
0
1
2
3
4
5
6
7
8
9
0
1
2
3
4
5
6
7
8
9
0
1
2
3
4
5
6
7
8
9
0
1
2
3
4
5
6
7
8
9
0
1
2
3
4
5
6
7
8
9
0
(
16) Hudson, G. A.; Zhang, Z.; Tietz, J. I.; Mitchell, D. A.; van der
Donk, W. A. In Vitro Biosynthesis of the Core Scaffold of the Thio-
peptide Thiomuracin. J. Am. Chem. Soc. 2015, 137 (51), 16012–16015.
(
17) Zhang, Z.; Hudson, G. A.; Mahanta, N.; Tietz, J. I.; van der Donk,
W. A.; Mitchell, D. A. Biosynthetic Timing and Substrate Specificity
for the Thiopeptide Thiomuracin. J. Am. Chem. Soc. 2016, 138, 15507.
(18) Wever, W. J.; Bogart, J. W.; Baccile, J. A.; Chan, A. N.;
Schroeder, F. C.; Bowers, A. A. Chemoenzymatic Synthesis of Thia-
zolyl Peptide Natural Products Featuring an Enzyme-Catalyzed Formal
[
4 + 2] Cycloaddition. J. Am. Chem. Soc. 2015, 137, 3494.
(19) Ozaki, T.; Yamashita, K.; Goto, Y.; Shimomura, M.; Hayashi, S.;
Asamizu, S.; Sugai, Y.; Ikeda, H.; Suga, H.; Onaka, H. Dissection of
Goadsporin Biosynthesis by in Vitro Reconstitution Leading to De-
signer Analogues Expressed in Vivo. Nat Commun 2017, 8, 14207.
(
20) Goto, Y.; Ito, Y.; Kato, Y.; Tsunoda, S.; Suga, H. One-Pot Syn-
thesis of Azoline-Containing Peptides in a Cell-Free Translation Sys-
tem Integrated with a Posttranslational Cyclodehydratase. Chem. Biol.
2
014, 21, 766.
(
21) Koehnke, J.; Mann, G.; Bent, A. F.; Ludewig, H.; Shirran, S.; Bot-
ting, C.; Lebl, T.; Houssen, W. E.; Jaspars, M.; Naismith, J. H. Struc-
tural Analysis of Leader Peptide Binding Enables Leader-Free Cyano-
bactin Processing. Nat. Chem. Biol. 2015, 11, 558.
(
22) Wever, W. J.; Bogart, J. W.; Bowers, A. A. Identification of Pyr-
idine Synthase Recognition Sequences Allows a Modular Solid-Phase
Route to Thiopeptide Variants. J. Am. Chem. Soc. 2016, 138, 13461.
(
23) Okeley, N. M.; Zhu, Y.; van der Donk, W. A. Facile Chemoselec-
tive Synthesis of Dehydroalanine-Containing Peptides. Org. Lett. 2000,
, 3603.
2
ACS Paragon Plus Environment