Communication
ChemComm
6 (a) C. M. Crudden, M. Sateesh and R. Lewis, J. Am. Chem. Soc., 2005,
127, 10045; (b) G. J. A. A. Soler-Illia and P. Innocenzi, Chem. – Eur. J.,
2006, 12, 4478; (c) A. Corma and H. Garcia, Adv. Synth. Catal., 2006,
348, 1391; (d) E. J. Acosta, C. S. Carr, E. E. Simanek and D. F. Shantz,
Adv. Mater., 2004, 16, 985; (e) Y. Fujimoto, A. Shimojima and
K. Kuroda, Chem. Mater., 2003, 15, 4768; ( f ) P. Judeinstein and
C. Sanchez, J. Mater. Chem., 1996, 6, 511.
7 (a) S. Park and I. Shin, Angew. Chem., Int. Ed., 2002, 41, 3180;
(b) U.-Y. Jung, J.-W. Park, E.-H. Han, S.-G. Kang, S. Lee and
C.-H. Jun, Chem. – Asian J., 2011, 6, 638.
8 (a) Y.-R. Yeon, Y. J. Park, J.-S. Lee, J.-W. Park, S.-G. Kang and C.-H.
Jun, Angew. Chem., Int. Ed., 2008, 47, 109; (b) J.-W. Park, Y. J. Park
and C.-H. Jun, Chem. Commun., 2011, 47, 4860; (c) D. H. Lee, E.-A. Jo,
J.-W. Park and C.-H. Jun, Tetrahedron Lett., 2010, 51, 160; (d) S. Park,
J. Pai, E.-H. Han, C.-H. Jun and I. Shin, Bioconjugate Chem., 2010,
21, 1246.
The catalytic activity of Pd-NHC@Si was demonstrated by its
use to promote a Suzuki coupling reaction of 4-iodotoluene
(5) with phenylboronic acid (6). Reaction of 5 with 6 in the
presence of Pd-NHC@Si (0.55 mol%) at room temperature gave
4-methyl-1,10-biphenyl (7) in 82% isolated yield (Fig. 5c).19 The
insoluble catalyst Pd-NHC@Si, recovered from the reaction
mixture by using centrifugation, was reused for a second Suzuki
cross coupling reaction between 5 and 6, which produced 7 in
80% yield.20 The results of experiments in which recovered
Pd-NHC@Si was employed repeatedly showed that its catalytic
efficiency is retained even after five cycles and that the transition
metal remains in the Pd2+ state.
9 For immobilization of organic functional groups onto silica using allyl-
silane, see: (a) T. Shimada, K. Aoki, Y. Shinoda, T. Nakamura,
N. Tokunaga, S. Inagaki and T. Hayashi, J. Am. Chem. Soc., 2003,
125, 4688; (b) K. Aoki, T. Shimada and T. Hayashi,
Tetrahedron: Asymmetry, 2004, 15, 1771; (c) Y. Maegawa, T. Nagano,
T. Yabuno, H. Nakagawa and T. Shimada, Tetrahedron, 2007, 63, 11467;
(d) Y. Wang, S. Hu and W. J. Brittain, Macromolecules, 2006, 39, 5675.
10 For examples describing the synthesis of periodic mesoporous
organosilica using bis(allylsilane) derivatives, see: M. P. Kapoor,
S. Inagaki, S. Ikeda, K. Kakiuchi, M. Suda and T. Shimada, J. Am.
Chem. Soc., 2005, 127, 8174.
11 (a) H. C. Kolb, M. G. Finn and K. B. Sharpless, Angew. Chem., Int. Ed.,
2001, 40, 2004; (b) Q. Wang, T. R. Chan, R. Hilgraf, V. V. Fokin,
K. B. Sharpless and M. G. Finn, J. Am. Chem. Soc., 2003, 125, 3192.
12 The trimethallylsilyl group was determined to be labile under acidic
SBA-15 synthetic conditions. See ESI† for details. For a related report
describing the solvent effect on sol–gel polymerization of allylsilane,
see: Y. Maegawa, N. Mizoshita, T. Tani, T. Shimada and S. Inagaki,
J. Mater. Chem., 2011, 21, 14020.
In the study described above, we have devised a new method
for the preparation of functionalized mesoporous silicas that
take advantage of the characteristic properties of methallyl-
silanes, notably their high stabilities during functional group
transformations and purification, and their labilities under
acidic conditions. These unique properties have been used to
develop a method for the one-step synthesis of high-performance,
functionalized mesoporous silicas from appropriately modified
organo-trimethallylsilanes that contain functional groups tethered
through long alkyl chains. Employing this method, a variety of
bulky functional groups such as a fluorophore, chromophore,
and even an ionic imidazolium moiety for recycling transition
metal catalysts can be incorporated into mesoporous silica
networks with loading extents of up to 15% of the organosilane
(ca. 1.0 mmol gꢀ1). The new method developed in this effort
overcomes the limitations of the conventional alkoxysilane
approach and the accompanying requirement for inefficient
multistep, solid-phase transformations.
13 (a) Y. G. Gololobov, I. N. Zhmurova and L. F. Kasukhin, Tetrahedron,
´
1981, 37, 437; (b) M. Vaultier, N. Knouzi and R. Carrie, Tetrahedron
Lett., 1983, 24, 763.
14 M. N. Parvin, H. Jin, M. B. Ansari, S.-M. Oh and S.-E. Park, Appl.
Catal., A, 2012, 413–414, 205.
15 For recent examples about studies on metal–NHC complexes immobi-
lized onto mesoporous silica, see: (a) M. K. Samantaray, J. Alauzun,
D. Gajan, S. Kavitake, A. Mehdi, L. Veyre, M. Lelli, A. Lesage, L. Emsley,
This work was supported by a grant from the National
Research Foundation of Korea (NRF) (Grant 2011-0016830).
´
C. Coperet and C. Thieuleux, J. Am. Chem. Soc., 2013, 135, 3193;
(b) M. P. Conley, R. M. Drost, M. Baffert, D. Gajan, C. Elsevier, W. T.
Franks, H. Oschkinat, L. Veyre, A. Zagdoun, A. Rossini, M. Lelli,
Notes and references
´
1 For reviews, (a) K. B. Yoon, Acc. Chem. Res., 2007, 40, 29; (b) F. Hoffmann,
A. Lesage, G. Casano, O. Ouari, P. Tordo, L. Emsley, C. Coperet and
¨
M. Cornelius, J. Morell and M. Froba, Angew. Chem., Int. Ed., 2006,
´˜
C. Thieuleux, Chem. – Eur. J., 2013, 19, 12234; (c) M. P. Conley,
´
´
´
C. Coperet and C. Thieuleux, ACS Catal., 2014, 4, 1458.
45, 3216; (c) A. B. Descalzo, R. Martınez-Manez, F. Sancenon,
´
´
K. Hoffmann and K. Rurack, Angew. Chem., Int. Ed., 2006, 45, 5924; 16 N. Marion, S. Dıez-Gonzalez and S. P. Nolan, Angew. Chem., Int. Ed.,
(d) A. Schlossbauer, D. Schaffert, J. Kecht, E. Wagner and T. Bein, J. Am.
Chem. Soc., 2008, 130, 12558.
2007, 46, 2988.
17 M. G. Gardiner, W. A. Herrmann, C.-P. Reisinger, J. Schwarz and
M. Spiegler, J. Organomet. Chem., 1999, 572, 239.
18 G. Liu, M. Hou, T. Wu, T. Jiang, H. Fan, G. Yang and B. Han, Phys.
Chem. Chem. Phys., 2011, 13, 2062.
19 E. Tyrrell, L. Whiteman and N. Williams, J. Organomet. Chem., 2011,
696, 3465.
´
2 C. Sanchez, B. Julian, P. Belleville and M. Popall, J. Mater. Chem.,
2005, 15, 3559.
3 G. F. Hays, A. D. H. Clague, R. Huis and G. Van Der Velden, Appl.
Surf. Sci., 1982, 10, 247.
4 A. Sayari and S. Hamoudi, Chem. Mater., 2001, 13, 3151.
5 For selected recent examples, see: (a) J. Nakazawa and T. D. P. Stack, 20 This result implies that Pd2+ is coordinated to the NHC ligand on the
J. Am. Chem. Soc., 2008, 130, 14360; (b) J. Nakazawa, B. J. Smith and
T. D. P. Stack, J. Am. Chem. Soc., 2012, 134, 2750; (c) B. Malvi,
B. R. Sarkar, D. Pati, R. Mathew, T. G. Ajithkumar and S. S. Gupta,
J. Mater. Chem., 2009, 19, 1409; (d) S. Huh, J. W. Wiench, J.-C. Yoo,
M. Pruski and V. S.-Y. Lin, Chem. Mater., 2003, 15, 4247.
silica surface. For comparison, when the Pd-adsorbed silica with no
NHC ligand, prepared by treatment of SBA-15 with TMCS and Pd(OAc)2,
was applied for the recycling experiment, no reaction occurred after the
2nd recycle due to complete leaching of Pd2+ (only 63% yield of the
Suzuki coupling product was obtained in the first run).
Chem. Commun.
This journal is ©The Royal Society of Chemistry 2015