Chem. Biodiversity 2021, 18, e2100095
presses lymph node and lung metastases of human
Wizard in Maestro 11.8. The missing atoms and polar
hydrogens were added. Automatically optimized
hydroxy, Asn, Gln, and His states using ProtAssign in
the H-bond assignment. Deleted all water molecules.
The force field applied OPLS3e. 2) Receptor grid
generation: The whole protein was defined as the
receptor and the ATP binding site of the kinase was
selected as the binding site. The grid box was centered
on the ligand and defined to dock ligands similar in
size to the workspace ligand. 3) Preparation of ligand:
Compounds were processed using LigPrep of the
Maestro 11.8 with default settings. 4) Molecular
docking: Molecular docking was performed by Ligand
Docking of Glide. After the molecular docking, the
types of proteinÀ ligand interaction were analyzed. The
image files were generated using pymol.
mammary breast tumor MDA-MB-231 via inhibition of
vascular endothelial growth factor-receptor (VEGF-R) 2 and
VEGF-R3 kinase’, Clin. Cancer Res. 2008, 14, 5459–5465.
[5] N. Ferrara, ‘Pathways mediating VEGF-independent tumor
angiogenesis’, Cytokine Growth Factor Rev. 2010, 21, 21–
26.
[6] D. Ribatti, A. Vacca, M. Rusnati, M. Presta, ‘The discovery of
basic fibroblast growth factor/fibroblast growth factor-2
and its role in haematological malignancies’, Cytokine
Growth Factor Rev. 2007, 18, 327–334.
[7] A. Bikfalvi, S. Klein, G. Pintucci, D. B. Rifkin, ‘Biological roles
of fibroblast growth factor-2’, Endocrine Reviews 1997, 18,
26–45.
[8] O. Casanovas, D. J. Hicklin, G. Bergers, D. Hanahan, ‘Drug
resistance by evasion of antiangiogenic targeting of VEGF
signaling in late-stage pancreatic islet tumors’, Cancer Cell
2005, 8, 299–309.
[9] S. Javerzat, P. Auguste, A. Bikfalvi, ‘The role of fibroblast
growth factors in vascular development’, Trends Mol. Med.
2002, 8, 483–489.
[10] M. Touat, E. Ileana, S. Postel-Vinay, F. Andre, J. C. Soria,
‘Targeting FGFR Signaling in Cancer’, Clin. Cancer Res.
2015, 21, 2684–2694.
Acknowledgments
The authors appreciate the financial support from the
State Key Laboratory for the Chemistry and Molecular
Engineering of Medicinal Resources of Guangxi Normal
University (CMEMR2014-CMEMR2018).
[11] E. Carrillo de Santa Pau, F. C. Arias, E. Caso Pelaez, G. M.
Munoz Molina, I. Sanchez Hernandez, I. Muguruza Trueba,
R. Moreno Balsalobre, S. Sacristan Lopez, A. Gomez Pinillos,
M. del Val Toledo Lobo, ‘Prognostic significance of the
expression of vascular endothelial growth factors A, B, C,
and D and their receptors R1, R2, and R3 in patients with
non-small cell lung cancer’, Cancer 2009, 115, 1701–1712.
[12] N. Cihoric, S. Savic, S. Schneider, I. Ackermann, M. Bichsel-
Naef, R. A. Schmid, D. Lardinois, M. Gugger, L. Bubendorf, I.
Zlobec, ‘Prognostic role of FGFR1 amplification in early-
stage non-small cell lung cancer’, Br. J. Cancer 2015, 110,
2914–2922.
[13] S. Juttner, C. Wissmann, T. Jons, M. Vieth, J. Hertel, S.
Gretschel, P. M. Schlag, W. Kemmner, M. Hocker, ‘Vascular
endothelial growth factor-D and its receptor VEGFR-3: two
novel independent prognostic markers in gastric adenocar-
cinoma’, J. Clin. Oncol. 2006, 24, 228–240.
Author Contribution Statement
Jin-Yang Zhang and Wen-Jun Xue designed and
synthesized these compounds and wrote the article.
Ru Dong, Ming-Tao Li, Min Wang, and Wen Li
performed the experiments, analyzed the data, and Li-
Ping Sun designed and conceived the experiments.
[14] H. Murase, M. Inokuchi, Y. Takagi, K. Kato, K. Kojima, K.
Sugihara, ‘Prognostic significance of the co-overexpression
of fibroblast growth factor receptors 1, 2 and 4 in gastric
cancer’, Mol. Clin. Oncol. 2014, 2, 509–517.
[15] S. Ghosh, C. A. W. Sullivan, M. P. Zerkowski, A. M. Molinaro,
D. L. Rimm, R. L. Camp, G. G. Chung, ‘High levels of vascular
endothelial growth factor and its receptors (VEGFR-1,
VEGFR-2, neuropilin-1) are associated with worse outcome
in breast cancer’, Hum. Pathol. 2008, 39, 1835–1843.
[16] Y. Huang, S. Goel, D. G. Duda, D. Fukumura, R. K. Jain,
‘Vascular normalization as an emerging strategy to
enhance cancer immunotherapy’, Cancer Res. 2013, 73,
2943–2948.
[17] C. Salem, M. Yosra, C. Sophie, E. Bernard, H. Meriem, N. M.
Zaeem, ‘Hypoxia Promotes Tumor Growth in Linking
Angiogenesis to Immune Escape’, Front. Immunol. 2012, 3,
21–30.
[18] T. H. Holmstrom, A. M. Moilanen, T. Ikonen, M. L. Bjorkman,
T. Linnanen, G. Wohlfahrt, S. Karlsson, R. Oksala, T. Korjamo,
S. Samajdar, S. Rajagopalan, S. Chelur, K. Narayanan, R. K.
References
[1] G. Limaverde-Sousa, C. Sternberg, C. G. Ferreira, ‘Antiangio-
genesis beyond VEGF inhibition: a journey from antiangio-
genic single-target to broad-spectrum agents’, Cancer
Treat. Rev. 2014, 40, 548–557.
[2] L. Adnane, P. A. Trail, I. Taylor, S. M. Wilhelm, ‘Sorafenib
(BAY 43-9006, Nexavar), a dual-action inhibitor that targets
RAF/MEK/ERK pathway in tumor cells and tyrosine kinases
VEGFR/PDGFR in tumor vasculature’, Methods Enzymol.
2006, 407, 597–612.
[3] P. A. Harris, A. Boloor, M. Cheung, R. Kumar, R. M. Crosby,
R. G. Davis-Ward, A. H. Epperly, K. W. Hinkle, R. N. Hunter,
J. H. Johnson, ‘Discovery of 5-[[4-[(2,3-dimethyl-2H-indazol-
6-yl)methylamino]-2-pyrimidinyl]amino]-2-methyl-benzene-
sulfonamide (Pazopanib), a novel and potent vascular
endothelial growth factor receptor inhibitor’, J. Med. Chem.
2008, 51, 4632–4640.
[4] J. Matsui, Y. Funahashi, T. Uenaka, T. Watanabe, A.
Tsuruoka, M. Asada, ‘Multi-kinase inhibitor E7080 sup-
(9 of 10) e2100095
© 2021 Wiley-VHCA AG, Zurich, Switzerland