7404
J. Am. Chem. Soc. 1996, 118, 7404-7405
Chart 1
Chemistry of Trichlorosilyl Enolates. 1. New
Reagents for Catalytic, Asymmetric Aldol Additions
Scott E. Denmark,* Stephen B. D. Winter, Xiping Su, and
Ken-Tsung Wong
Roger Adams Laboratory, Department of Chemistry
UniVersity of Illinois, Urbana, Illinois 61801
Scheme 1
ReceiVed February 28, 1996
The asymmetric aldol addition is among the most powerful
reactions in synthetic organic chemistry and has been extensively
studied over the past 15 years.1 The strategies for reagent-
controlled asymmetric induction fall into three broadly defined
classes (Chart 1): (1) asymmetric modification of the enolate
with chiral acyl auxiliaries (A), (2) asymmetric modification
of the enolate with chiral metalloid auxiliaries (B), and (3)
asymmetric modification of the aldehyde with chiral Lewis acids
(C). Each of these strategies has yielded spectacular success,
and each has unique advantages and disadvantages. The chiral
auxiliary approaches are extremely general and give high
selectivities by virtue of the highly ordered nature of the
transition structures (closed) which results from the structure
of R*/L* and the organizational features of the metal M.1a,c,2
Unfortunately, these reactions have yet to be made catalytic.
The chiral Lewis acid approach takes advantage of the Mu-
kaiyama aldol reaction3 of enoxysilane derivatives and is
demonstrably catalytic and often diastereo- and enantioselective.
However, these reactions are less general and the selectivity is
most likely dominated by van der Waals interactions which
guide the matching of enantiotopic faces in open transition
states.3,4
Scheme 2
We set for ourselves the goal of inventing a new type of aldol
addition reaction which involves the ordered preassembly of
enolate, aldehyde and chiral agent for maximum asymmetric
influence and which would be catalytic in the chiral reagent.
The formulation of this concept, Scheme 1, requires a metal
enolate moiety capable of expanding its valence by two and a
chiral Lewis base G*. The basis of this proposal for ligand-
promoted aldehyde additions finds precedent in our recently
disclosed asymmetric allylations (crotylations) with allylic
trichlorosilanes.5 We wish to report that the corresponding
trichlorosilyl enolates are highly reactiVe agents for the aldol
reaction and that their additions can be asymmetrically
catalyzed by chiral phosphoramides.
comparison.9 For the initial studies, the use of isolated, purified
trichlorosilyl enolates was deemed essential, and we followed
the general procedure of Baukov and Lutsenko,8a Scheme 2.
Thus, from methyl tributylstannylacetate (1)10 we could obtain
the trichlorosilyl ketene acetal 28a as a distillable liquid (bp 25
°C/5 mmHg),11 which thermally isomerized to methyl
(6) (a) Nakamura, E.; Kuwajima, I. Chem. Lett. 1983, 59. (b) Nakamura,
E.; Kuwajima, I. Tetrahedron Lett. 1983, 24, 3347. (c) Pridgen, L. N.; Abdel-
Magid, A.; Lantos, I. Tetrahedron Lett. 1989, 30, 5539. (d) Veronese, A.
C.; Gandolfi, V.; Basato, M.; Corain, B, J. Chem. Res. Synop. 1988, 246.
(e) Annunziata, R.; Benaglia, M.; Cinquini, M.; Cozzi, F.; Raimondi, L.
Tetrahedron 1994, 50, 5821. (f) For a general review of the chemistry of
tin enolates, see: Shibata, I.; Baba, A. Org. Prep. Proced. Int. 1994, 26,
85.
(7) The literature on reactions of trichlorotitanium enolates is vast. Only
leading papers containing previous references from representative labora-
tories are listed: (a) Yamago, S.; Machii, D.; Nakamura, E. J. Org. Chem.
1991, 56, 2098. (b) Harrison, C. R. Tetrahedron Lett. 1987, 28, 4135. (c)
Evans, D. A.; Duffy, J. L.; Dart, M. J. Tetrahedron Lett. 1994, 35, 8537.
(d) Evans, D. A.; Rieger, D. L.; Bilodeau, M. T.; Urpi, F. J. Am. Chem.
Soc. 1991, 113, 1047. (e) Annunziata, R.; Benaglia, M.; Cinquini, M.; Cozzi,
F.; Ponzini, F.; Raimondi, L. Tetrahedron 1994, 50, 2939. (f) Yan, T.-H.;
Hung, A.-W.; Lee, H.-C.; Chang, C.-S.; Liu, W.-H. J. Org. Chem. 1995,
60, 3301. (g) Abrahams, I.; Motevalli, M.; Robinson, A. J.; Wyatt, P. B.
Tetrahedron 1994, 50, 12755. (h) Pridgen, L. N.; Abdel-Magid, A. F.;
Lantos, I.; Shilcrat, S.; Eggleston, D. S. J. Org. Chem. 1993, 58, 5107. (i)
Luke, G. P.; Morris, J. J. Org. Chem. 1995, 60, 3013.
(8) (a) Burlachenko, G. S.; Khasapov, B. N.; Petrovskaya, L. I.; Baukov,
Yu. I.; Lutsenko, I. F. J. Gen. Chem. USSR (Engl. Transl.) 1966, 36, 532.
(b) Lutsenko, I. F.; Baukov, Yu. I.; Burlachenko, G. S.; Khasapov, B. N.
J. Organomet. Chem. 1966, 5, 20. (c) Burlachenko, G. S.; Baukov, Yu. I.;
Dzherayan, T. G.; Lutsenko, I. F. J. Gen. Chem. USSR (Engl. Transl.) 1975,
45, 73. (d) Baukov, Yu. I.; Lutsenko, I. F. Moscow UniV. Chem. Bull. (Engl.
Transl.) 1970, 25, 72. (e) Ponomarev, S. V.; Baukov, Yu. I.; Dudukina, O.
V.; Petrosyan, I. V.; Petrovskaya, L. I. J. Gen. Chem. USSR (Engl. Transl.)
1967, 37, 2092. (f) Benkeser, R. A.; Smith, W. E. J. Am. Chem. Soc. 1968,
90, 5307. (g) Burlachenko, G. S.; Baukov, Yu. I.; Lutsenko, I. F. J. Gen.
Chem. USSR (Engl. Transl.) 1970, 40, 88.
While substantial literature exists on the generation and
reactions of trichlorostannyl6 and trichlorotitanium7 enolates,
the chemistry of trichlorosilyl enolates8 is embryonic by
(1) For reviews of enantioselective aldol additions see: (a) Evans, D.
A.; Nelson, J. V.; Taber, T. R. In Topics in Stereochemistry; Eliel, E. L.,
Allinger, N. L., Wilen, S. H., Eds.; Wiley Interscience: New York, 1982;
Vol. 13, p 1. (b) Heathcock, C. H. In ComprehensiVe Carbanion Chemistry;
Buncel, E., Durst, T., Eds.; Elsevier: New York, 1984; Vol. 5B, p 177. (c)
Heathcock, C. H. In Asymmetric Synthesis; Morrison, J. D., Ed.; Academic
Press: New York, 1984; Vol. 3, Chapter 2. (d) Kim, B. M.; Williams, S.
F.; Masamune, S. In ComprehensiVe Organic Synthesis. Additions to C-X
π Bonds; Heathcock, C. H., Ed.; Pergamon Press: Oxford; 1991; Vol. 2,
Part 2, pp 239-275. (e) Gennari, C. In ComprehensiVe Organic Synthesis.
Additions to C-X π Bonds; Heathcock, C. H., Ed.; Pergamon Press: Oxford;
1991; Vol. 2, Part 2, pp 629-660. (f) Bach, T. Angew. Chem., Int. Ed.
Engl. 1994, 33, 417. (g) Franklin, A. S.; Paterson, I. Contemp. Org. Synth.
1994, 1, 317-416. (h) Braun, M.; Sacha, H. J. Prakt. Chem. 1993, 335,
653-668. (i) Sawamura, M.; Ito, Y. In Catalytic Asymmetric Synthesis;
Ojima, I., Ed.; VCH: New York, 1993; pp 367-388.
(2) Denmark, S. E.; Henke, B. R. J. Am. Chem. Soc. 1991, 113, 2177.
(3) (a) Mukaiyama, T. Org. React. 1982, 28, 203. (b) Mukaiyama, T.;
Murakami, M. Synthesis 1987, 1043. (c) Kobayashi, S.; Uchiro, H.; Shiina,
I.; Mukaiyama, T. Tetrahedron 1993, 49, 1761.
(4) Denmark, S. E.; Lee, W. J. Org. Chem. 1994, 59, 707.
(5) (a) Denmark, S. E.; Coe, D. M.; Pratt, N. E.; Griedel, B. D. J. Org.
Chem. 1994, 59, 6161. (b) Kobayashi has pioneered the use of formamides
as promoters of this reaction; see: Kobayashi, S.; Nishio, K. J. Org. Chem.
1994, 59, 6620.
S0002-7863(96)00653-1 CCC: $12.00 © 1996 American Chemical Society