Macromolecules
Article
Xiao, K. Polym. Chem. 2013, 4, 5270. (c) Sax, S.; Rugen-Penkalla, N.;
Neuhold, A.; Schuh, S.; Zojer, E.; List, E. J. W.; Mullen, K. Adv. Mater.
2010, 22, 2087. (d) Chang, W.-H.; Gao, J.; Dou, L. T.; Chen, C.-C.; Liu,
Y. S.; Yang, Y. Adv. Energy Mater. 2014, 4, 1300864. (e) Chen, Y.; Zhang,
S. Q.; Wu, Y.; Hou, J. H. Adv. Mater. 2014, 26, 2744.
(5) (a) Zhou, H.; Yang, L.; Xiao, S.; Liu, S.; You, W. Macromolecules
2010, 43, 811. (b) Mei, J. G.; Bao, Z. N. Chem. Mater. 2014, 26, 604.
(c) Lei, T.; Dou, J. H.; Pei, J. Adv. Mater. 2012, 24, 6457. (d) Mei, J. G.;
Kim, D. H.; Ayzner, A. L.; Toney, M. F.; Bao, Z. A. J. Am. Chem. Soc.
2011, 133, 20130.
(6) (a) Solmaz, T.; Fatemeh, J.; Ineke, V. S.; Catherine, K.; Satish, P.;
Remco, W. A. H.; Ryan, C. C.; Laurence, L.; Dirk, J. M. V.; Thomas, J.
C.; Jan, C. H.; L. Jan, A. K. Adv. Funct. Mater. 2015, 25, 150. (b) Sengwa,
R. J. Polym. Int. 1998, 45, 43.
(7) Boese, R.; Weiss, H. C.; Blaser, D. Angew. Chem., Int. Ed. 1999, 38,
988.
CONCLUSIONS
■
In summary, we have synthesized four conjugated polymers with
oligo(ethylene glycol) (OEG) or alkyl chain as the side chain and
investigated the effect of OEG side chain on the properties of
conjugated polymers. Replacing alkyl chain with OEG chain can
decrease the π−π stacking distance of polymer backbone in thin
film from 0.44 to 0.41 nm despite of the length of OEG chain,
because OEG chain is more flexible than alkyl chain. Compared
with PFDTOBT with alkyl chain, PFDTOBT-O2 with OEG
chain of similar length exhibits higher crystallinity, higher charge
carrier mobility and narrower bandgap. As the length of OEG
chain increasing, PFDTOBT-O3 and PFDTOBT-O4 exhibit
decreased hole mobility due to the increased content of inert
component in the polymers. The large polarity of OEG side
chain makes the conjugated polymer suitable for PSC devices
fabricated with polar nonhalogenated solvent. According to the
new insight on conjugated polymers with OEG side chain,
conjugated polymers with high charge carrier mobility by using
OEG side chains with proper length may be anticipated.
(8) Yang, L. Q.; Zhou, H. X.; You, W. J. Phys. Chem. C 2010, 114,
16793.
(9) (a) Du, C.; Li, C. H.; Li, W. W.; Chen, X.; Bo, Z. S.; Veit, C.; Ma, Z.
F.; Wuerfel, U.; Zhu, H. F.; Hu, W. P.; Zhang, F. L. Macromolecules 2011,
44, 7617. (b) Svensson, M.; Zhang, F. L.; Veenstra, S. C.; Verhees, W. J.
H.; Hummelen, J. C.; Kroon, J. M.; Inganas, O.; Andersson, M. R. Adv.
Mater. 2003, 15, 988. (c) Chen, M. H.; Hou, J.; Hong, Z.; Yang, G.; Sista,
S.; Chen, L. M.; Yang, Y. Adv. Mater. 2009, 21, 4238.
(10) (a) Liu, J.; Choi, H.; Kim, J. Y.; Bailey, C.; Durstock, M.; Dai, L. M.
Adv. Mater. 2012, 24, 538. (b) Leclerc, M.; Ranger, M.; Belanger-
Gariepy, F. Acta Crystallogr. C 1998, 54, 799.
(11) Meng, B.; Fang, G.; Fu, Y. Y.; Xie, Z. Y.; Wang, L. X.
Nanotechnology 2013, 24, 484004.
(12) Qin, R. P.; Li, W. W.; Li, C. H.; Du, C.; Veit, C.; Schleiermacher,
H. F.; Andersson, M.; Bo, Z. S.; Liu, Z. P.; Inganas, O.; Wuerfel, U.;
Zhang, F. L. J. Am. Chem. Soc. 2009, 131, 14612.
ASSOCIATED CONTENT
* Supporting Information
■
S
Synthesis procedure of the materials, characterization, fabrication
of PSC devices and hole-only devices, absorption spectra of the
materials in MOB solution, AFM topography images, J−V and
EQE curves, and characteristics of the PSC devices. The
Supporting Information is available free of charge on the ACS
(13) Wang, X. C.; Jiang, P.; Chen, Y.; Luo, H.; Zhang, Z. G.; Wang, H.
Q.; Li, X. Y.; Yu, G.; Li, Y. F. Macromolecules 2013, 46, 4805.
(14) (a) Thompson, B. C.; Frechet, J. M. J. Angew. Chem., Int. Ed. 2008,
47, 58. (b) Li, G.; Zhu, R.; Yang, Y. Nat. Photonics 2012, 6, 153.
(c) Gunes, S.; Neugebauer, H.; Sariciftci, N. S. Chem. Rev. 2007, 107,
1324.
AUTHOR INFORMATION
Corresponding Authors
■
Notes
(15) (a) Meng, B.; Fu, Y. Y.; Xie, Z. Y.; Liu, J.; Wang, L. X. Polym. Chem.
2015, 6, 805. (b) Duan, C. H.; Cai, W. Z.; Hsu, B. B. Y.; Zhong, C. M.;
Zhang, K.; Liu, C. C.; Hu, Z. C.; Huang, F.; Bazan, G. C.; Heeger, A. J.;
Cao, Y. Energy Environ. Sci. 2013, 6, 3022. (c) Chueh, C.-C.; Yao, K.; Yip,
H.-L.; Chang, C.-Y.; Xu, Y.-X.; Chen, K.-S.; Li, C.-Z.; Liu, P.; Huang, F.;
Chen, Y. W.; Chen, W.-C.; Jen, A. K.-Y. Energy Environ. Sci. 2013, 6,
3241. (d) Guo, X.; Zhang, M. J.; Cui, C. H.; Hou, J. H.; Li, Y. F. ACS
Appl. Mater. Interfaces 2014, 6, 8190.
The authors declare no competing financial interest.
ACKNOWLEDGMENTS
■
This work was financially supported by the 973 Project (No.
2014CB643504, 2015CB655001), the Nature Science Founda-
tion of China (No. 51373165), the Strategic Priority Research
Program of Chinese Academy of Sciences (No. XDB12010200),
and the “Thousand Talents Program” of China.
(16) Brabec, C. J.; Heeney, M.; McCulloch, I.; Nelson, J. Chem. Soc.
Rev. 2011, 40, 1185.
(17) (a) Peet, J.; Kim, J. Y.; Coates, N. E.; Ma, W. L.; Moses, D.;
Heeger, A. J.; Bazan, G. C. Nat. Mater. 2007, 6, 497. (b) Lou, S. J.;
Szarko, J. M.; Xu, T.; Yu, L. P.; Marks, T. J.; Chen, L. X. J. Am. Chem. Soc.
2011, 133, 20661.
(18) Slooff, L. H.; Veenstra, S. C.; Kroon, J. M.; Moet, D. J. D.;
Sweelssen, J.; Koetse, M. M. Appl. Phys. Lett. 2007, 90, 143506.
REFERENCES
■
(1) (a) Yu, G.; Gao, J.; Hummelen, J. C.; Wudl, F.; Heeger, A. J. Science
1995, 270, 1789. (b) Guo, X.; Baumgarten, M.; Mullen, K. Prog. Polym.
̈
Sci. 2013, 38, 1832. (c) Adachi, T.; Tong, L.; Kuwabara, J.; Kanbara, T.;
Saeki, A.; Seki, S.; Yamamoto, Y. J. Am. Chem. Soc. 2013, 135, 870.
(d) Dou, L. T.; Gao, J.; Richard, E.; You, J. B.; Chen, C. C.; Cha, K. C.;
He, Y. J.; Li, G.; Yang, Y. J. Am. Chem. Soc. 2012, 134, 10071. (e) Zhang,
L.; Colella, N. S.; Liu, F.; Trahan, S.; Baral, J. K.; Winter, H. H.;
Mannsfeld, S. C. B.; Briseno, A. L. J. Am. Chem. Soc. 2013, 135, 844.
(f) Liu, J.; Zhou, Q. G.; Cheng, Y. X.; Geng, Y. H.; Wang, L. X.; Ma, D.
G.; Jing, X. B.; Wang, F. S. Adv. Mater. 2005, 17, 2974.
(2) Gustafsson, G.; Cao, Y.; Treacy, G. M.; Klavetter, F.; Colaneri, N.;
Heeger, A. J. Nature 1992, 357, 477.
(3) (a) Li, W. S.; Yamamoto, Y.; Fukushima, T.; Saeki, A.; Seki, S.;
Tagawa, S.; Masunaga, H.; Sasaki, S.; Takata, M.; Aida, T. J. Am. Chem.
Soc. 2008, 130, 8886. (b) Zhang, X.; Chen, Z. J.; Wurthner, F. J. Am.
Chem. Soc. 2007, 129, 4886. (c) Moon, J. H.; McDaniel, W.; MacLean,
P.; Hancock, L. E. Angew. Chem., Int. Ed. 2007, 46, 8223.
(4) (a) Kanimozhi, C.; Yaacobi-Gross, N.; Chou, K. W.; Amassian, A.;
Anthopoulos, T. D.; Patil, S. J. Am. Chem. Soc. 2012, 134, 16532.
(b) Shao, M.; He, Y. J.; Hong, K. L.; Rouleau, C. M.; Geohegan, D. B.;
G
Macromolecules XXXX, XXX, XXX−XXX