10.1002/anie.202011352
Angewandte Chemie International Edition
RESEARCH ARTICLE
Special Polymerization Processes in Polymer Science: A Comprehensive
Reference, Elsevier BV: Amsterdam, the Netherlands, 2012; c) X.-B. Lu, W.-M.
Ren, G.-P. Wu, Acc. Chem. Res. 2012, 45, 1721-1735; d) M. A. Hillmyer, W. B.
Tolman, Acc. Chem. Res. 2014, 47, 2390-2396; e) J. M. Longo, M. J. Sanford,
G. W. Coates, Chem. Rev. 2016, 116, 15167-15197; f) T. Steinbach, F. R.
Wurm, Angew. Chem. Int. Ed. 2015, 54, 6098-6108; Angew. Chem. 2015, 127,
6196–6207; g) A. P. Dove, R. C. Pratt, B. G. G. Lohmeijer, R. M. Waymouth, J.
L. Hedrick, J. Am. Chem. Soc. 2005, 127, 13798-13799; h) M. Hong, E. Y. X.
Chen, Nat. Chem. 2016, 8, 42-49; i) X. Zhang, G. O. Jones, J. L. Hedrick, R.
M. Waymouth, Nat. Chem. 2016, 8, 1047-1053; j) N. Zhao, C. Ren, H. Li, Y. Li,
S. Liu, Z. Li, Angew. Chem. Int. Ed. 2017, 56, 12987-12990; Angew. Chem.
2017, 129, 13167–13170; k) C.-J. Zhang, H.-L. Wu, Y. Li, J.-L. Yang, X.-H.
Zhang, Nat.Commun. 2018, 9, 2137; l) S. Liu, T. Bai, K. Ni, Y. Chen, J. Zhao,
J. Ling, X. Ye, G. Zhang, Angew. Chem. Int. Ed. 2019, 58, 15478-15487;
Angew. Chem. 2019, 131, 15624–15633; m) J. Yuan, W. Xiong, X. Zhou, Y.
Zhang, D. Shi, Z. Li, H. Lu, J. Am. Chem. Soc. 2019, 141, 4928-4935; n) G.-W.
Yang, Y.-Y. Zhang, R. Xie, G.-P. Wu, J. Am. Chem. Soc. 2020, 142, 12245-
12255; o) G. S. Sulley, G. L. Gregory, T. T. D. Chen, L. Peña Carrodeguas, G.
Trott, A. Santmarti, K.-Y. Lee, N. J. Terrill, C. K. Williams, J. Am. Chem. Soc.
2020, 142, 4367-4378.
[3] O. Thillaye du Boullay, E. Marchal, B. Martin-Vaca, F. P. Cossío, D.
Bourissou, J. Am. Chem. Soc. 2006, 128, 16442-16443.
[4]Q. Yin, L. Yin, H. Wang, J. Cheng, Acc. Chem. Res. 2015, 48, 1777-1787.
[5] a) T. L. Simmons, G. L. Baker, Biomacromolecules 2001, 2, 658-663; b) Q.
Yin, R. Tong, Y. Xu, K. Baek, L. W. Dobrucki, T. M. Fan, J. Cheng,
Biomacromolecules 2013, 14, 920-929.
[6] a) Y. Sun, Z. Jia, C. Chen, Y. Cong, X. Mao, J. Wu, J. Am. Chem. Soc.
2017, 139, 10723-10732; b) P. Wang, J. Liang, T. Yin, J. Yang, Polym. Chem.
2019, 10, 5498-5506; c) Y. Cui, J. Jiang, X. Pan, J. Wu, Chem. Commun.
2019, 55, 12948-12951; d) S. K. Raman, R. Raja, P. L. Arnold, M. G.
Davidson, C. K. Williams, Chem. Commun. 2019, 55, 7315-7318; e) Q. Feng,
Y. Zhong, L. Xie, R. Tong, Synlett 2017, 28, 1857-1866; f) B. Martin Vaca, D.
Bourissou, ACS Macro Lett. 2015, 4, 792-798; g) M. Li, Y. Tao, J. Tang, Y.
Wang, X. Zhang, Y. Tao, X. Wang, J. Am. Chem. Soc. 2019, 141, 281-289; h)
Y. Zhong, R. Tong, Front. Chem. 2018, 6, 641; i) A. Buchard, D. R. Carbery, M.
G. Davidson, P. K. Ivanova, B. J. Jeffery, G. I. Kociok-Köhn, J. P. Lowe,
Angew. Chem. Int. Ed. 2014, 53, 13858-13861; Angew. Chem. 2014, 126,
14078–14081; j) J. Jiang, Y. Cui, Y. Lu, B. Zhang, X. Pan, J. Wu,
Macromolecules 2020, 53, 946-955; k)Y. Zhong, Q. Feng, X. Wang, J. Chen,
W. Cai, R. Tong, ACS Macro Lett. 2020, 9, 1114-1118.
Conclusion
Inspired by the nature of anion-binding, we developed here,
an unimolecular anion-binding organocatalysis for the efficient
ring-opening polymerization of OCAs, generating high MW
isotactic polyesters bearing diverse functionality. High MW
polyester shows significantly improved mechanical properties in
comparison to the low MW congeners. The experimental and
DFT calculations highlighted the key roles played by the unique
dynamic anion-binding interaction of thiourea moiety to
propagating species and the synergistic decarboxylation for
addressing the tradeoff issue between efficient chain
propagation and minimal epimerization. The moisture-tolerant of
these unimolecular anion-binding catalysts, coupled with their
ability to impart potent control on ring-opening polymerization,
illustrate their potential to the chemistry community.
Organocatalytic ring-opening polymerization via thiourea-based
H-bond organocatalysts have been reported previously;[1l, 9b, 14a-c]
however, this is the first time that a process based on anion-
binding, which represents an advanced binding mode has been
used for selective ring-opening polymerization of OCAs, and has
potential feasibility for other monomers, such as N-
carboxyanhydrides (NCA) and propiolactones. Furthermore, We
believe that the concept of utilizing the dynamic anion-binding to
suppress side reactions (e.g., cyclization, transesterification and
epimerization) and to facilitate the chain propagation is universal
and valuable that is often inaccessible to more conventional
organobases or transition metal-based catalysts.
[7] R. Wang, J. Zhang, Q. Yin, Y. Xu, J. Cheng, R. Tong, Angew. Chem. Int.
Ed. 2016, 55, 13010-13014; Angew. Chem. 2016, 128, 13204–13208.
[8] a) Q. Feng, R. Tong, J. Am. Chem. Soc. 2017, 139, 6177-6182; b) Q. Feng,
L. Yang, Y. Zhong, D. Guo, G. Liu, L. Xie, W. Huang, R. Tong, Nat. Commun.
2018, 9, 1559.
[9] a) N. E. Kamber, W. Jeong, R. M. Waymouth, R. C. Pratt, B. G. G.
Lohmeijer, J. L. Hedrick, Chem. Rev. 2007, 107, 5813-5840; b) W. N. Ottou, H.
Sardon, D. Mecerreyes, J. Vignolle, D. Taton, Prog. Polym. Sci. 2016, 56, 64-
115.
[10] a) R. Dutzler, E. B. Campbell, M. Cadene, B. T. Chait, R. MacKinnon,
Nature 2002, 415, 287-294; b) R. Dutzler, E. B. Campbell, R. MacKinnon,
Science 2003, 300, 108-112.
[11] Z. Zhang, P. R. Schreiner, Chem. Soc. Rev. 2009, 38, 1187-1198.
[12] a) C. Caltagirone, P. A. Gale, Chem. Soc. Rev. 2009, 38, 520-563; b) N.
Busschaert, C. Caltagirone, W. Van Rossom, P. A. Gale, Chem. Rev. 2015,
115, 8038-8155; c) A. E. Hargrove, S. Nieto, T. Zhang, J. L. Sessler, E. V.
Anslyn, Chem. Rev. 2011, 111, 6603-6782.
Acknowledgement
This work is supported by the National Natural Science
Foundation of China (Grants 91856113, 51873211, 52073274,
and 22001243) and the Jilin Science and Technology Bureau
(Grant 20200301023RQ). Helpful discussions with Prof.
Junpeng Zhao (South China University of Technology, China)
and Dr. Fengchao Cui (Changchun Institute of Applied
Chemistry, Chinese Academy of Sciences) are gratefully
acknowledged.
[13] a) S. Lin, E. N. Jacobsen, Nat. Chem. 2012, 4, 817-824; b) R. S. Klausen,
C. R. Kennedy, A. M. Hyde, E. N. Jacobsen, J. Am. Chem. Soc. 2017, 139,
12299-12309; c) A. R. Brown, W.-H. Kuo, E. N. Jacobsen, J. Am. Chem. Soc.
2010, 132, 9286-9288; d) C. K. De, N. Mittal, D. Seidel, J. Am. Chem. Soc.
2011, 133, 16802-16805; e) N. Mittal, K. M. Lippert, C. K. De, E. G. Klauber, T.
J. Emge, P. R. Schreiner, D. Seidel, J. Am. Chem. Soc. 2015, 137, 5748-5758;
f) O. García Mancheño, S. Asmus, M. Zurro, T. Fischer, Angew. Chem. Int. Ed.
2015, 54, 8823-8827; Angew.Chem. 2015, 127,8947–8951; g) R. J. Phipps, G.
L. Hamilton, F. D. Toste, Nat. Chem. 2012, 4, 603-614; h) Angew. Chem. Int.
Ed. 2013, 52, 534-561; Angew. Chem. 2013, 125, 558 – 588.
Conflict of interest
The authors declare no competing financial interests.
Keywords:
Anion-binding
catalysis;
O-carboxyanhydrides;
Ring-opening
polyesters;
polymerization;
stereoregularity
[14] a) C. Thomas, B. Bibal, Green Chem. 2014, 16, 1687-1699; b) B. Lin, R.
M. Waymouth, Macromolecules 2018, 51, 2932-2938; c) J. U. Pothupitiya, R.
S. Hewawasam, M. K. Kiesewetter, Macromolecules 2018, 51, 3203-3211; d)
N. U. Dharmaratne, J. U. Pothupitiya, M. K. Kiesewetter, Org. Biomol. Chem.
2019,17, 3305-3313.
[15] H. A. Brown, R. M. Waymouth, Acc. Chem. Res. 2013, 46, 2585-2596.
[16] The nucleofugality of the nucleophile reflects its leaving ability after the
nucleophile attacks the electrophilic monomer.[15] For ring-opening
polymerization (ROP) initiated by nucleophile with strong nucleofugality,
cyclization reaction through liberating nucleophile catalyst would easily occur
in high monomer conversion, thereby detrimental to the synthesis of high
molecular weight polymers. In order to compare the nucleofugality between
catalyst 3a and 3b more intuitively, we conducted nucleophilic substitution
model reactions between methanol (MeOH) and the anion-binding electrophilic
intermediates produced via mixing of catalyst 3a or 3b with succinic anhydride
(SA) at 1:1 ratio (See Figure S40).
References
[1] a) S. M. Grayson, J. M. J. Fréchet, Chem. Rev. 2001, 101, 3819-3868; b)
N. Hadjichristidis, M. Pitsikalis, S. Pispas, H. Iatrou, Chem. Rev. 2001, 101,
3747-3792; c) M. Kamigaito, T. Ando, M. Sawamoto, Chem. Rev. 2001, 101,
3689-3746; d) C. J. Hawker, K. L. Wooley, Science 2005, 309, 1200-1205; e)
C. W. Bielawski, R. H. Grubbs, Prog. Polym. Sci. 2007, 32, 1-29; f) G. Moad, E.
Rizzardo, S. H. Thang, Acc. Chem. Res. 2008, 41, 1133-1142; g) S. Aoshima,
S. Kanaoka, Chemical Reviews 2009, 109, 5245-5287; h) Cheng, J.; Deming,
T. J., In Peptide-Based Materials (Ed.: Deming, T.), Springer Berlin
Heidelberg: Berlin, Heidelberg, 2012; pp 1-26; i) X. Pan, M. A. Tasdelen, J.
Laun, T. Junkers, Y. Yagci, K. Matyjaszewski, Prog. Polym. Sci. 2016, 62, 73-
125; j) J.-F. Lutz, : ACS Macro Lett. 2020, 9, 185-189; k) M. L. McGraw, E. Y.
X. Chen, Macromolecules 2020, 53, 6102-6122; l) M. K. Kiesewetter, E. J.
Shin, J. L. Hedrick, R. M. Waymouth, Macromolecules 2010, 43, 2093-2107;
[2] a) Dubois, P., Coulembier, O., Raquez, J. M., Eds. Handbook of Ring‐
Opening Polymerization, Wiley-VCH: Weinheim, Germany, 2009; b)
Matyjaszewski, K.; Möller, M., Eds. vol(4) Ring-Opening Polymerization and
[17] K. Matyjaszewski, J. Phys. Org. Chem. 1995, 8, 197-207.
[18] L. Guo, S. H. Lahasky, K. Ghale, D. Zhang, J. Am. Chem. Soc. 2012, 134,
9163-9171.
[19] a) M. Fevre, J. Pinaud, Y. Gnanou, J. Vignolle, D. Taton, Chem. Soc. Rev.
2013, 42, 2142-2172; b) A. K. Acharya, Y. A. Chang, G. O. Jones, J. E. Rice, J.
9
This article is protected by copyright. All rights reserved.