ChemComm
Communication
Notes and references
1 W. R. Wilson and M. P. Hay, Nat. Rev. Cancer, 2011, 11, 393.
2 S. Kizaka-Kondoh, M. Inoue, H. Harada and M. Hiraoka, Cancer Sci.,
2003, 94, 1021; A. L. Harris, Nat. Rev. Cancer, 2002, 2, 38; E. K.
Rofstad, H. Rasmussen, K. Galappathi, B. Mathiesen, K. Nilsen and
B. A. Graff, Cancer Res., 2002, 62, 1847.
3 J. M. Brown and W. R. William, Nat. Rev. Cancer, 2004, 4, 437.
4 Y. Chen and L. Hu, Med. Res. Rev., 2009, 29, 29.
5 D. W. Bryant, D. R. McCalla, M. Leeksma and P. Laneuville, Can. J.
Microbiol., 1981, 27, 81; C. Bryant and M. DeLuca, J. Biol. Chem.,
1991, 266, 4119.
6 R. L. Koder and A.-F. Miller, Biochim. Biophys. Acta, 1998, 1387, 395.
7 G. Xu and H. L. McLeod, Clin. Cancer Res., 2001, 7, 3314; J. I. Grove,
A. L. Lovering, C. Guise, P. R. Race, C. J. Wrighton, S. A. White,
E. I. Hyde and P. F. Searle, Cancer Res., 2003, 63, 5532; P. F. Searle,
M.-J. Chen, L. Hu, P. R. Race, A. L. Lovering, J. I. Grove, C. Guise,
M. Jaberipour, N. D. James, V. Mautner, L. S. Young, D. J. Kerr,
A. Mountain, S. A. White and E. I. Hyde, Clin. Exp. Pharmacol.
Physiol., 2004, 31, 811; W. A. Denny, Curr. Pharm. Des., 2002, 8, 1349.
8 C. Berne, L. Betancor, H. R. Luckarift and J. C. Spain, Biomacro-
molecules, 2006, 7, 2631.
9 J. L. Dearling, J. S. Lewis, G. E. Mullen, M. J. Welch and P. J. Blower,
JBIC, J. Biol. Inorg. Chem., 2002, 7, 249; S. Zhang, M. Hosaka,
T. Yoshihara, K. Negishi, Y. Iida, S. Tobita and T. Takeuchi, Cancer
Res., 2010, 70, 4490; J. Pacheco-Torres, P. Lopez-Larrubia, P. Ballesteros
and S. Cerdan, NMR Biomed., 2011, 24, 1; P. R. Race, A. L. Lovering,
S. A. White, J. I. Grove, P. F. Searle, C. W. Wrighton and E. Hyde,
J. Mol. Biol., 2007, 368, 481.
10 H. Kobayashi, M. Ogawa, R. Alford, P. L. Choyke and Y. Urano,
Chem. Rev., 2009, 110, 2620; K. Kikuchi, Chem. Soc. Rev., 2010,
39, 2048; W. Jiang, Y. Cao, Y. Liu and W. Wang, Chem. Commun.,
2010, 46, 1944; X. Chen, X. Tian, I. Shin and J. Yoon, Chem. Soc. Rev.,
2011, 40, 4783; S. D. Bull, M. G. Davidson, J. M. H. van den Elsen,
J. S. Fossey, A. T. A. Jenkins, Y.-B. Jiang, Y. Kubo, F. Marken,
K. Sakurai, J. Zhao and T. D. James, Acc. Chem. Res., 2012, 46, 312.
11 H.-C. Huang, K.-L. Wang, S.-T. Huang, H.-Y. Lin and C.-M. Lin,
Biosens. Bioelectron., 2011, 26, 3511; Z. Li, X. Li, X. Gao, Y. Zhang,
W. Shi and H. Ma, Anal. Chem., 2013, 85, 3926; L. Cui, Y. Zhong,
W. Zhu, Y. Xu, Q. Du, X. Wang, X. Qian and Y. Xiao, Org. Lett.,
2011, 13, 928; K. Xu, F. Wang, X. Pan, R. Liu, J. Ma, F. Kong and
B. Tang, Chem. Commun., 2013, 49, 2554; K. Tanabe, N. Hirata,
H. Harada, M. Hiraoka and S.-i. Nishimoto, ChemBioChem, 2008,
9, 426; S. Takahashi, W. Piao, Y. Matsumura, T. Komatsu, T. Ueno,
T. Terai, T. Kamachi, M. Kohno, T. Nagano and K. Hanaoka, J. Am.
Chem. Soc., 2012, 134, 19588.
Fig. 4 (a) Fluorescence and bright-field images of A549 cells at different oxygen
concentrations. The cells were incubated under normoxic (20% pO2) and different
hypoxic (5%, 1% pO2) conditions for 8 h, and then treated with NBP (1 mM) for 2 h.
(b) Mean fluorescence intensity change of A549 incubated with NBP (1 mM) for 0–2 h
after incubation under normoxic (20% pO2) and different hypoxic (5%, 1% pO2)
conditions for 8 h. Image J software gave the average fluorescence intensity value
of A549 cells.
cells were washed with PBS buffer (pH 7.4) and were treated
with 1 mM NBP in FBS-free DMEM for 2 h, 1 h and 0.5 h. Before
taking images, A549 cells were washed three times with PBS
buffer. As shown in Fig. 4a, A549 cells under normoxic condi-
tions showed nearly no fluorescence enhancement. Whereas
the cells incubated under hypoxic conditions showed drastic
fluorescence enhancement and the fluorescence enhancement
of cells is further promoted by 1% pO2 compared to 5% pO2.
Using Image Jt software, we also obtained the average fluores-
cence intensity value at various time points (Fig. S7, ESI†). As
shown in Fig. 4b, the fluorescence intensity of A549 cells increased
dramatically but a slight enhancement was observed for the
normoxic environment. These results demonstrated the potential
of probe NBP to sensitively detect hypoxia in tumor cells.
12 E. Nakata, Y. Yukimachi, H. Kariyazono, S. Im, C. Abe, Y. Uto,
H. Maezawa, T. Hashimoto, Y. Okamoto and H. Hori, Bioorg. Med.
Chem., 2009, 17, 6952; K. Kiyose, K. Hanaoka, D. Oushiki, T. Nakamura,
M. Kajimura, M. Suematsu, H. Nishimatsu, T. Yamane, T. Terai,
Y. Hirata and T. Nagano, J. Am. Chem. Soc., 2010, 132, 15846;
H. Komatsu, H. Harada, K. Tanabe, M. Hiraoka and S.-i. Nishimoto,
MedChemComm, 2010, 1, 50.
In summary, we have developed a novel selective and sensi- 13 J. V. Frangioni, Curr. Opin. Chem. Biol., 2003, 7, 626; S. A. Hilderbrand
and R. Weissleder, Curr. Opin. Chem. Biol., 2010, 14, 71; L. Yuan,
W. Lin, K. Zheng, L. He and W. Huang, Chem. Soc. Rev., 2013,
42, 622.
tive fluorescence probe NBP for the detection of nitroreductase
and hypoxia. Incubated with NADH, the enzyme NTR activated
the probe NBP to release the fluorophore NBF and the intensity 14 N.-H. Ho, R. Weissleder and C.-H. Tung, ChemBioChem, 2007, 8, 560;
N.-h. Ho, R. Weissleder and C.-H. Tung, Tetrahedron, 2006, 62, 578;
J. Jose and K. Burgess, Tetrahedron, 2006, 62, 11021.
15 P. L. Carl, P. K. Chakravarty and J. A. Katzenellenbogen, J. Med.
of emission enhanced dramatically at around 658 nm. Fluores-
cent imaging of A549 cells also showed that the probe NBP can
be used to detect tumor hypoxia. The near-infrared fluorescence
and modest Stokes shifts of probe NBP minimized the inter-
ference from absorption and autofluorescence of bio-species,
which makes the probe applicable for tumor diagnosis.
The authors are grateful for the financial support from
the State Key Program of National Natural Science of China
(21236002), the National Basic Research Program of China
(2010CB126100), the National High Technology Research
and Development Program of China (2011AA10A207), and the
Fundamental Research Funds for the Central Universities.
Chem., 1981, 24, 479.
16 W. A. Denny, Eur. J. Med. Chem., 2001, 36, 577; E. McCormack,
E. Silden, R. M. West, T. Pavlin, D. R. Micklem, J. B. Lorens, B. E. Haug,
M. E. Cooper and B. T. Gjertsen, Cancer Res., 2013, 73, 1276.
17 J. Jose, Y. Ueno and K. Burgess, Chem.–Eur. J., 2009, 15, 418.
18 R. J. Knox, T. C. Jenkins, S. M. Hobbs, S. Chen, R. G. Melton and
P. J. Burke, Cancer Res., 2000, 60, 4179.
19 M. M. Paz, Chem. Res. Toxicol., 2009, 22, 1663; S. E. Wolkenberg and
D. L. Boger, Chem. Rev., 2002, 102, 2477; R. Rossi, A. Milzani, I. Dalle-
Donne, D. Giustarini, L. Lusini, R. Colombo and P. Di Simplicio,
Clin. Chem. Lab. Med., 2002, 48, 742; M. M. Paz and M. Tomasz,
Org. Lett., 2001, 3, 2789.
20 F. Ni, H. Feng, L. Gorton and T. M. Cotton, Langmuir, 1990, 6, 66.
c
10822 Chem. Commun., 2013, 49, 10820--10822
This journal is The Royal Society of Chemistry 2013