5044 J. Am. Chem. Soc., Vol. 122, No. 21, 2000
Fagan et al.
With the goal of discovering the best catalyst for an Ullmann
alkoxylation reaction, we used a strategy that parallels enzyme
inhibitor optimization. To our knowledge, this approach has not
yet been reported to be successful for the discoVery and
optimization of homogeneous catalysts. Our strategy was to
screen a parent set of ligands that were designed to contain both
rationally and randomly chosen members. After screening this
library and discovering successful hits, smaller focused libraries
were created based on ligand structure-activity relationships.
These daughter libraries were screened, and resulted in a higher
“hit frequency” than the parent library. This method of screening
an intelligent/random parent library followed by focused libraries
was demonstrated to be a fast and logical approach for
optimization of the ligand component of the catalytic Ullmann
reactions studied here.
The discovery of the best heterogeneous catalyst for a reaction
by combinatorial methods is fraught with difficulties and renders
the process of rational library design challenging. Library
catalyst synthesis, history, characterization, and reproducible
performance are important and sometimes difficult to control
experimental parameters.8 However, for homogeneous catalysts
that combine a ligand and a metal, the factors that control
catalyst performance at the molecular level are better defined
and easier to incorporate when creating a ligand library. We
felt that the design of a ligand library for homogeneous catalysis
need not be as random or exhaustive in parameter space as the
heterogeneous catalyst case. Incorporating molecular parameters
important to most homogeneous catalyst functions was a natural
way to cover ligand diversity space as completely as possible
with a relatively small parent library.9 For our particular study,
we considered the following as important parameters to vary
when preparing the “intelligent” portion of the parent library:
(1) electron-donating and -withdrawing abilities of the ligands
(σ and π); (2) sterics around the donating atom on the ligands;10
(3) monodentate or multidentate donation, (4) for multidentate
ligands, ligand bite angles;11 and (5) second coordination sphere
effects (molecular recognition potential).12 Taking these pa-
rameters into account, we attempted to maximize the chance
of discovering the best ligand with a minimum set. Although
the bulk of the library members were chosen with these
parameters in mind, we also took the opportunity for serendipity
by incorporating ligands that were not expected to work for
any particular reason. By a combination of intelligent and
random experimentation, we hoped to attain our goal of finding
the best “pyridine-containing” ligands for the Ullmann reactions
in this study. Having found these lead ligands, we then would
prepare and screen a focused library whose members contained
structural elements resembling the discovered lead compounds.
We selected the Ullmann ether forming reaction because it
constitutes a practical approach to form aryl ethers, a structure
common to many agrochemical and pharmaceutical lead com-
pounds. These reactions couple aryl halides and alkoxides and
are usually carried out using Cu(I) or Cu(II) salts in the presence
of ligands (or a solvent that can serve as a ligand). Recent
advances have been made for certain types of Ullman
reactions,13-17 and novel Pd-based catalytic systems have been
shown to be efficient at carrying out C-O and other C-X bond
forming reactions.18 General trends indicate that electron-
deficient aryl halides typically work best in Ullmann chemistry,
but yields and/or rates can rapidly decrease with increasing
electron density on the aromatic ring, increasing steric bulk, or
the presence of deleterious unprotected functionality. An ad-
ditional problem especially encountered in the methoxylation
reaction of haloarenes is the formation of the reduced arene
byproduct; one of our goals was to minimize this side reaction.
In general, the detailed mechanistic steps of copper-catalyzed
Ullmann reactions are poorly understood and dependent on
many variables; this is exactly the type of experimental situation
where combinatorial methods are best suited.
Copper(I)-catalyzed C-O bond-forming reactions have been
reported in the presence of pyridine-type ligands.14,16c Numerous
pyridine-containing compounds are commercially available and
(13) For recent reviews on C-X coupling (X ) N and O) see: (a)
Cristau, H.-J.; Desmurs, J.-R.; Ratton, S.; Rignol, S.; Taillefer, M. In The
Roots of Organic DeVelopment; Desmurs, J-R., Ratton, S., Eds.; Industrial
Chemistry Library, 1996; Vol. 8, p 90. (b) Tonks, L.; Williams, J. M.
Organomet. Chem. 1998, 26, Chapter 8, p 180. (c) Beller, M.; Riermeier,
T. H. In Transition Metals for Organic Synthesis; Beller, M., Bolm, C.,
Eds.; Wiley-VCH: New York, 1998; Chapter 2.11.
(14) Yamakawa, K. U.S. Patent 5,006,660 to Fuji Photo Film Co.
(15) For general Ullmann couplings see: (a) Paine, A. J. J. Am. Chem.
Soc. 1987, 109, 1496. (b) Couture, C.; Paine, A. J. Can. J. Chem. 1985,
63, 111. (c) Lindley, J. Tetrahedron 1984, 40, 1433. (d) Yamamoto, T.;
Kurata, Y. Can. J. Chem. 1983, 61, 86.
(16) For phenoxylation reactions see: (a) Marcoux, J.-F.; Doye, S.;
Buchwald, S. L. J. Am. Chem. Soc. 1997, 119, 10539. (b) Nicolaou, K. C.;
Boddy, C. N. C.; Natarajan, S.; Yue, T.-Y.; Li, H.; Brase, S.; Ramanjulu,
J. M. J. Am. Chem. Soc. 1997, 119, 3421. (c) Pellon, R. F.; Carrasco, R.;
Milian, V.; Rodes, L. Synth. Commun. 1995, 25, 1077. (d) Yeager, G. W.;
Schissel, D. N. Synthesis 1995, 28. (e) Smith, K.; Jones, D. J. Chem. Soc.,
Perkin Trans. 1 1992, 407. (f) Oi, R.; Shimakawa, C.; Takenaka, S. Chem.
Lett. 1988, 899. (g) Afzali, A.; Firouzabadi, H.; Khalafi-nejad, A. Synth.
Commun. 1983, 13, 335.
(17) For methoxylation reactions see: (a) Ragan, J. A.; Malowski, T.
W.; Castaldi, M. J.; Hill, P. D. Synthesis 1998, 1599. (b) Capdevielle, P.;
Maumy, M. Tetrahedron Lett. 1993, 34, 1007. (c) Aalten, H. L.; van Koten,
G.; Grove, D. M.; Kuilman, T.; Piekstra, O. G.; Hulshof, L. A.; Sheldon,
R. A. Tetrahedron 1989, 45, 5565. (d) Keegstra, M. A.; Peters, T. H. A.;
Brandsma, L. Tetrahedron 1992, 48, 3633. (e) Keegstra, M. A.; Brandsma,
L. Recl. TraV. Chim. Pays-Bas 1991, 110, 299. (f) Bacon, R. G. R.;
Rennison, S. C. J. Chem. Soc. (C) 1969, 312. For intramolecular Cu-
catalyzed alkoxylations see refs 17c and 17f and: (g) Castro, C. E.; Havlin,
R.; Honwad, V. K.; Malte, A.; Moje, S. J. Am. Chem. Soc. 1969, 91, 6464.
(18) For palladium-catalyzed phenoxylation and alkoxylation reaction
see: (a) Aranyos, A.; Old, D. W.; Kiyomori, A.; Wolfe, J. P.; Sadighi, J.
P.; Buchwald, S. L. J. Am. Chem. Soc. 1999, 121, 4369. (b) Mann, G.;
Incarvito, C.; Rheingold, A. L.; Hartwig, J. F. J. Am. Chem. Soc. 1999,
121, 3224. (c) Hartwig, J. F. Acc. Chem. Res. 1998, 31, 852. (d) Hartwig,
J. F. Angew. Chem., Int. Ed. 1998, 37, 2047. (e) Mann, G.; Hartwig, J. F.
Tetrahedron Lett. 1997, 38, 8005. (f) Palucki, M.; Wolfe, J. P.; Buchwald,
S. L. J. Am. Chem. Soc. 1997, 119, 3395. (g) Palucki, M.; Wolfe, J. P.;
Buchwald, S. L. J. Am. Chem. Soc. 1996, 118, 10333.
(7) For references emphasizing screening methodologies: (a) Reetz, M.
T.; Becker, M. H.; Klein, H.-W.; Stockigt, D. Angew. Chem., Int. Ed. 1999,
38, 1758. (b) Guo, J.; Wu, J.; Siuzdak, G.; Finn, M. G. Angew. Chem., Int.
Ed. 1999, 38, 1755. (c) Ding, K.; Ishii, A.; Mikami, K. Angew. Chem., Int.
Ed. 1999, 38, 497. (d) Shaughnessy, K. H.; Kim, P.; Hartwig, J. F. J. Am.
Chem. Soc. 1999, 121, 2123. (e) Cooper, A. C.; McAlexander, L. H.; Lee,
D.-H.; Torres, M. T.; Crabtree, R. H. J. Am. Chem. Soc. 1998, 120, 9971.
(f) Reetz, M. T.; Becker, M. H.; Kuhling, K. M.; Holzwarth, A. Angew.
Chem., Int. Ed. 1998, 37, 2647. (g) Taylor, S. J.; Morken, J. P. Science
1998, 280, 267.
(8) Schlogl, R. Angew. Chem., Int. Ed. . 1998, 37, 2333.
(9) Parshall G.; Ittel, S. D. Homogeneous Catalysis. The Applications
and Chemistry of Catalysis by Soluble Transition Metal Complexes, 2nd
ed.; Wiley: New York, 1992; 342 pp (English).
(10) Tolman, C. A. Chem. ReV. 1977, 77, 313.
(11) (a) Van Haaren, R. J.; Oevering, H.; Coussens, B. B.; Van
Stricjdonck, G. P. F.; Reek, J. N. H.; Kamer, P. C. J.; Van Leeuwen, P. W.
N. M. Eur. J. Inorg. Chem. 1999, 8, 1237. (b) Dierkes, P.; Van Leeuwen,
P. W. N. M. J. Chem. Soc., Dalton Trans. 1999, 10, 1519. (c) Van der
Veen, L. A.; Boele, M. D. K.; Bregman, F. R.; Kamer, P. C. J.; Van
Leeuwen, P. W. N. M. J. Am. Chem. Soc. 1998, 120, 11616. (d) Casey, C.
P.; Paulsen, E. L.; Beuttenmueller, E. W.; Proft, B. R.; Petrovich, L. M.;
Matter, B. A.; Powell, D. R. J. Am. Chem. Soc. 1997, 119, 11817. (e) Casey,
C. P.; Whiteker, G.; Melville, M. G.; Petrovich, L. M.; Gavney, J. A., Jr.;
Powell, D. R. J. Am. Chem. Soc. 1992, 114, 5535.
(12) (a) Reetz, M. T. Top. Catal. 1998, 4, 187. (b) Landis, C. R.;
Cleveland, T.; Firman, T. K. J. Am. Chem. Soc. 1998, 120, 2641. (c) Landis,
C. R.; Firman, T. K.; Root, D. M.; Cleveland, T. R. J. Am. Chem. Soc.
1998, 120, 1842. (d) Reetz, M. T.; Waldvogel, S. R. Angew. Chem., Int.
Ed. 1997, 36, 865. (e) Trost, B. M. Acc. Chem. Res. 1996, 29, 355. (f)
Reetz, M. T.; Niemeyer, C. M.; Hermes, M.; Goddard, R. Angew. Chem.,
Int. Ed. 1992, 31, 1017.