Organometallics
Article
(12) Analogous results were obtained in experiments employing
higher [Pd(PPh3)4] loadings (2.5% and 5%) (see the Supporting
(13) We also investigated the effect of incrementally varying the
Na2CO3 loading on the outcome of the reaction at 70 °C. Our results
suggest that the Na2CO3 loading (1−5 equiv) has little effect on the
efficiency of reactions employing p-iodotoluene (see the Supporting
Information). Substituting either Cs2CO3 or NMe4OH for Na2CO3
also provided inefficient couplings of p-iodotoluene (see the
(26) Carrow, B. P.; Hartwig, J. F. J. Am. Chem. Soc. 2011, 133, 2116−
2119.
(27) For a recent review on transmetalation in the Suzuki−Miyaura
cross-coupling, see: Lennox, A. J. J.; Lloyd-Jones, G. C. Angew. Chem.,
Int. Ed. 2013, 52, 7362−7370.
(28) For selected studies on transmetalation in the Suzuki−Miyaura
cross-coupling, see: refs 22 and 26. (a) Thomas, A. A.; Wang, H.;
Zahrt, A. F.; Denmark, S. E. J. Am. Chem. Soc. 2017, 139, 3805−3821.
(b) Thomas, A. A.; Denmark, S. E. Science 2016, 352, 329−332.
́
(c) Ortuno, M. A.; Lledos, A.; Maseras, F.; Ujaque, G. ChemCatChem
̃
2014, 6, 3132−3138. (d) Lima, C. F. R. A. C.; Rodrigues, A. S. M. C.;
Silva, V. L. M.; Silva, A. M. S.; Santos, L. M. N. B. F. ChemCatChem
2014, 6, 1291−1302. (e) Amatore, C.; Jutand, A.; Le Duc, G. Chem. -
Eur. J. 2012, 18, 6616−6625. (f) Schmidt, A. F.; Kurokhtina, A. A.;
Larina, E. V. Russ. J. Gen. Chem. 2011, 81, 1573−1574. (g) Butters, M.;
Harvey, J.; Jover, J.; Lennox, A.; Lloyd-Jones, G.; Murray, P. Angew.
Chem., Int. Ed. 2010, 49, 5156−5160. (h) Huang, Y.-L.; Weng, C.-M.;
Hong, F.-E. Chem. - Eur. J. 2008, 14, 4426−4434. (i) Braga, A. A. C.;
Ujaque, G.; Maseras, F. Organometallics 2006, 25, 3647−3658.
(14) We also performed experiments employing higher PPh3
(15) It has been established that PPh3 can effect the reduction of
Pd(OAc)2 to generate catalytically active Pd(0) species. See, for
example: ref 5c. (a) Carole, W. A.; Colacot, T. J. Chem. - Eur. J. 2016,
22, 7686−7695. (b) Amatore, C.; Carre, E.; Jutand, A.; M’Barki, M.
́
Organometallics 1995, 14, 1818−1826. (c) Amatore, C.; Jutand, A.;
M’Barki, M. Organometallics 1992, 11, 3009−3013.
(16) Pd(OAc)2 was used in preference to Pdx(dba)y, as challenges in
establishing the exact speciation and purity of the latter have been
identified. See, for example: (a) Amatore, C.; Jutand, A. Coord. Chem.
Rev. 1998, 178−180, 511−528. (b) Zalesskiy, S. S.; Ananikov, V. P.
Organometallics 2012, 31, 2302−2309.
(17) See, for example: Bumagin, N. A.; Bykov, V. V.; Beletskaya, I. P.
Bull. Acad. Sci. USSR, Div. Chem. Sci. 1989, 38, 2206; Bull. Acad. Sci.
USSR, Div. Chem. Sci. (Engl. Transl.) 1989, 38, 2206.
(18) We also performed experiments investigating the effect of halide
additives (20% NH4I, NH4Br, NH4F, NMe4I, NMe4Br, NMe4Cl, LiBr,
LiCl, KBr, KCl, CsBr, or CsCl) on Suzuki−Miyaura couplings (see the
́
(j) Braga, A. A. C.; Morgon, N. H.; Ujaque, G.; Lledos, A.; Maseras,
F. J. Organomet. Chem. 2006, 691, 4459−4466. (k) Braga, A. A. C.;
Morgon, N. H.; Ujaque, G.; Maseras, F. J. Am. Chem. Soc. 2005, 127,
9298−9307. (l) Miyaura, N. J. Organomet. Chem. 2002, 653, 54−57.
(m) Matos, K.; Soderquist, J. A. J. Org. Chem. 1998, 63, 461−470.
(n) Aliprantis, A. O.; Canary, J. W. J. Am. Chem. Soc. 1994, 116, 6985−
6986. (o) Smith, G. B.; Dezeny, G. C.; Hughes, D. L.; King, A. O.;
Verhoeven, T. J. Org. Chem. 1994, 59, 8151−8156. (p) Thomas, A. A.;
Zahrt, A. F.; Delaney, C. P.; Denmark, S. E. J. Am. Chem. Soc. 2018,
140, 4401−4416.
(29) Lloyd-Jones and Lennox note that “Elucidation of the dominant
pathway to transmetalation is not at all straightforward: one must
establish the kinetically active boron and palladium intermediates, and
they may not necessarily be the most abundant species present in the
medium.”.27
(30) Detailed studies exploring the transmetalation of trans-
[Pd(PPh3)2(Ph)(I)] with p-tol-B(OH)3K (and 18-crown-6) and
Pd(PPh3)(Ph)(μ-OH)]2 with p-tol-B(OH)2 under stoichiometric
conditions were performed in THF/H2O solvent mixtures.26 Extensive
studies employing electrochemical methods to investigate the
transmetalation of trans-[Pd(PPh3)2(Ar)(X)] with Ar-B(OH)2 (n-
Bu4NOH as the base) under catalytic conditions were performed in a
DMF/MeOH solvent mixture.22
(19) It is generally acknowledged that defining key transmetalation
intermediates is even more complicated with aryltrifluoroborate
nucleophiles. See, for example: Lennox, A. J. J.; Lloyd-Jones, G. C.
Isr. J. Chem. 2010, 50, 664−674 and references cited therein.
(20) (a) Andersen, N. G.; Keay, B. A. Chem. Rev. 2001, 101, 997−
1030. (b) Niemeyer, Z. L.; Milo, A.; Hickey, D. P.; Sigman, M. S. Nat.
Chem. 2016, 8, 610−617.
(21) (a) Tolman, C. A. J. Am. Chem. Soc. 1970, 92, 2953−2956.
(b) Otto, S.; Roodt, A. Inorg. Chim. Acta 2004, 357, 1−10.
(c) Ackermann, M.; Pascariu, A.; Hocher, T.; Siehl, H.-U.; Berge, S.
̈
J. Am. Chem. Soc. 2006, 128, 8434−8440.
(22) The observation that oxidative addition is not the turnover-
limiting step in this reaction is consistent with previous studies. See,
for example: Amatore, C.; Jutand, A.; Le Duc, G. Chem. - Eur. J. 2011,
17, 2492−2503 and references cited therein.
(23) It was reported that trans-[Pd(PPh3)2I2] was formed in reactions
with [Pd(PPh3)4] and (iodoethynyl)benzene (in addition to the
expected oxidative addition product). See: (a) Weigelt, M.; Becher, D.;
Poetsch, E.; Bruhn, C.; Steinborn, D. Z. Anorg. Allg. Chem. 1999, 625,
1542−1547. The formation of trans-[Pd(PPh3)2I2] from trans-
[Pd(PPh3)2(R)(I)] has also been reported: (b) Gulia, N.; Pigulski, B.;
Szafert, S. Organometallics 2015, 34, 673−682. trans-[Pd(PPh3)2I2]
was also formed in reactions with [Pd(PPh3)4] and 9-iodo-m-
carborane. See: (c) Marshall, W. J.; Young, R. J., Jr.; Grushin, V. V.
Organometallics 2001, 20, 523−533.
(24) We were also able to isolate and characterize trans-
[Pd(PPh3)2I2]. The spectroscopic data obtained on this compound
were consistent both with equivalent data reported in the literature
and also with an authentic sample of trans-[Pd(PPh3)2I2] that we
prepared via a literature procedure: Hahn, F. E.; Lugger, T.; Beinhoff,
M. Z. Naturforsch. B Chem. Sci. 2004, 59, 196−201.
(31) Germane observations regarding the adverse effect of PPh3 have
also been reported in Pd-catalyzed Stille cross-couplings; see ref 9.
(a) Farina, V.; Baker, S. R.; Benigni, D. A.; Hauck, S. I.; Sapino, C., Jr J.
Org. Chem. 1990, 55, 5833−5847. (b) Scott, W. J.; Stille, J. K. J. Am.
Chem. Soc. 1986, 108, 3033−3040.
(32) The reaction of trans-[(Pd(PPh3)2(p-NCC6H4)(X)] (X = Cl,
Br, I) with PhB(OH)2 was studied as a function of initial hydroxide
concentration in DMF. In this way, the following reactivity order was
determined: [Pd−I] > [Pd−Br] > [Pd−Cl].22
(33) For a study focused on the reactivity of Pd(0) complexes
derived from mixtures of Pd(dba)2 and PPh3 and P(2-furyl)3 ligands,
see for example: Amatore, C.; Jutand, A.; Meyer, G.; Atmani, H.;
Khalil, F.; Chahdi, F. O. Organometallics 1998, 17, 2958−2964.
(34) Farina and Krishnan also state “When a large excess of P(2-
furyl)3 was added to a solution of trans-[Pd(PPh3)2(Ph)(I)] and PPh3,
no trace of trans-[Pd{P(2-furyl)3}2(Ph)(I)] was observed, the
corresponding signal for P(2-furyl)3 being the only new peak in the
spectrum.”.9
(25) When the study shown in eq 2 was performed in DMF/H2O
instead of n-PrOH/H2O, similar results were obtained. When the
experiment shown in eq 2 was performed using p-bromotoluene
instead of p-iodotoluene, 31P NMR spectroscopy indicated that trans-
[Pd(PPh3)2Br2] was not present in the reaction mixture. trans-
[Pd(PPh3)2Br2] was also not observed in equivalent experiments
performed in DMF/H2O.
F
Organometallics XXXX, XXX, XXX−XXX