ACS Catalysis
Page 4 of 5
The Supporting Information is available free of charge on
the ACS Publications website.
(6) For examples of the cooperative catalysis of flavins, see: (a)
Yano, Y.; Hoshino, Y.; Tagaki, W. Chem. Lett. 1980, 9, 749ꢀ752. (b)
Shinkai, S.; Yamashita, T.; Kusano, Y.; Manabe, O. J. Org. Chem.
1
2
3
4
5
6
7
8
9
1
1
1
1
1
1
1
1
1
1
2
2
2
2
2
2
2
2
2
2
3
3
3
3
3
3
3
3
3
3
4
4
4
4
4
4
4
4
4
4
5
5
5
5
5
5
5
5
5
5
6
1
980, 45, 4947ꢀ4952. (c) Bergstad, K.; Jonsson, S. Y.; Bäckvall, J.ꢀE.
Experimental procedures and NMR spectra of novel comꢀ
pounds and products
J. Am. Chem. Soc. 1999, 121, 10424ꢀ10425. (d) Marz, M.; Chudoba,
J.; Kohout, M.; Cibulka, R. Org. Biomol. Chem. 2017, 15, 1970ꢀ1975
and refs 5d and 5k.
ACKNOWLEDGMENT
(7) For selected recent reviews, see: (a) Jereb, M.; Vražič, D.;
Zupan, M. Tetrahedron 2011, 67, 1355ꢀ1387. (b) Merritt, E. A.; Olꢀ
ofsson, B. Synthesis 2011, 517ꢀ538. (c) Parvatkar, P. T.; Parameswaꢀ
ran, P. S.; Tilve, S. G. Chem. Eur. J. 2012, 18, 5460ꢀ5489. (d) Ren, Y.
M.; Cai, C.; Yang, R. C. Rsc Adv. 2013, 3, 7182ꢀ7204. (e) Samanta,
R.; Matcha, K.; Antonchick, A. P. Eur. J. Org. Chem. 2013, 2013,
5769ꢀ5804. (f) Dong, D.ꢀQ.; Hao, S.ꢀH.; Wang, Z.ꢀL.; Chen, C. Org.
Biomol. Chem. 2014, 12, 4278ꢀ4289. (g) Wu, X.ꢀF.; Gong, J.ꢀL.; Qi,
X. Org. Biomol. Chem. 2014, 12, 5807ꢀ5817. (h) Liu, D.; Lei, A.
Chem. Asian J. 2015, 10, 806ꢀ823.
This work was supported in part by JSPS/MEXT
KAKENHI (GrantꢀinꢀAid for Scientific Research (C), no.
16K05797 and GrantꢀinꢀAid for Scientific Research on
Innovative Areas ”Advanced Molecular Transformations by
Organocatalysts”, no. 26105724) and the Sumitomo Founꢀ
dation. This work was performed in part under the Cooperꢀ
ative Research Program of the Institute for Protein Reꢀ
search, Osaka University, CRꢀ16ꢀ05. The authors thank Dr.
Michiko Egawa of Shimane University for her help with
elemental analysis.
0
1
2
3
4
5
6
7
8
9
0
1
2
3
4
5
6
7
8
9
0
1
2
3
4
5
6
7
8
9
0
1
2
3
4
5
6
7
8
9
0
1
2
3
4
5
6
7
8
9
0
(
8) (a) Cai, Z.ꢀJ.; Lu, X.ꢀM.; Zi, Y.; Yang, C.; Shen, L.ꢀJ.; Li, J.;
Wang, S.ꢀY.; Ji, S.ꢀJ. Org. Lett. 2014, 16, 5108ꢀ5111. (b) Senadi, G.
C.; Hu, W.ꢀP.; Lu, T.ꢀY.; Garkhedkar, A. M.; Vandavasi, J. K.; Wang,
J.ꢀJ. Org. Lett. 2015, 17, 1521ꢀ1524. (c) Chen, J.; Jiang, Y.; Yu, J.ꢀT.;
Cheng, J. J. Org. Chem. 2016, 81, 271ꢀ275.
REFERENCES
(1) (a) Hill, C. L. Nature 1999, 401, 436−437. (b) Sheldon, R. A.;
Arends, I. W. C. E.; Dijksman, A. Catal. Today 2000, 57, 157−166.
(
9) (a) Bakulev, V. A.; Dehaen, W. The Chemistry of 1,2,3-
Thiadiazoles, John Wiley & Sons, Inc., New York, 2004. (b) Thomas,
E. W.; Nishizawa, E. E.; Zimmermann, D. C.; Williams, D. J. J. Med.
Chem. 1985, 28, 442ꢀ446. (c) Dong, W.ꢀL.; Liu, Z.ꢀX.; Liu, X.ꢀH.; Li,
Z.ꢀM.; Zhao, W.ꢀG. Eur. J. Med. Chem. 2010, 45, 1919ꢀ1926.
(
c) Simándi, L. I. Advances in Catalytic Activation of Dioxygen by
Metal Complexes; Kluwer Academic Publishers: Dordrecht, The
Netherlands, 2002. (d) J.ꢀE. Bäckvall Modern Oxidation Methods;
WileyꢀVCH: Weinheim, 2004. (e) Gunasekaran, N. Adv. Synth. Cat.
2015, 357, 1990ꢀ2010.
(
10) (a) Morzherin, Y. Y. G., T. V.; Bakulev, V. A. Chem. Hetero-
cycl. Compd. 2003, 39, 679ꢀ706. (b) Kurandina, D.; Gevorgyan, V.
Org. Lett. 2016, 18, 1804ꢀ1807 and references therein.
(
2) Piera, J.; Bäckvall, J.ꢀE. Angew. Chem., Int. Ed. 2008, 47,
506ꢀ3523.
3) For reviews of flavin catalysts, see: (a) Imada, Y.; Naota, T.
(
11) The flavinꢀcatalyzed system is also known to promote the oxiꢀ
3
dation of sulfides to sulfoxides, see refs. 3.
(12) The chemoselectivity was also supported by the fact that the
reaction of 1a in the presence of methylphenylsulfide (1 equiv) gave
(
Chem. Rec. 2007, 7, 354ꢀ361. (b) Gelalcha, F. G. Chem. Rev. 2007,
107, 3338ꢀ3361. (c) de Gonzalo, G.; Fraaije, M. W. ChemCatChem
2013, 5, 403ꢀ415. (d) Cibulka, R. Eur. J. Org. Chem. 2015, 2015,
3
(
a in 71% yield without the generation of methylphenylsulfoxide
Scheme S2, Supporting Information).
13) Because the spectral changes were measured during the initial
9
2
15ꢀ932. (e) Iida, H.; Imada, Y.; Murahashi, S.ꢀI. Org. Biomol. Chem.
015, 13, 7599–7613.
(
–
stage of the reaction (<10% yield) where an excess amount of I exꢀ
ists, the generated I
through the dynamic equilibrium between I
D.; Connick, R. E. J. Am. Chem. Soc. 1951, 73, 1842ꢀ1843; (b) Gotꢀ
tardi, W. Arc. Pharm. 1999, 332, 151ꢀ157; (c) Gottardi, W. In Iodine
Chemistry and Applications; Kaiho, T. Ed.; John Wiley & Sons, Inc.:
New Jersey, 2015, p 375.
(
4) For examples of flavinꢀcatalyzed aerobic oxygenations, see: (a)
Imada, Y.; Iida, H.; Ono, S.; Murahashi, S. I. J. Am. Chem. Soc. 2003,
25, 2868ꢀ2869. (b) Imada, Y.; Iida, H.; Murahashi, S.ꢀI.; Naota, T.
–
2 3
was almost quantitatively converted to I
–
2
3
and I . (a) Awtrey, A.
1
Angew. Chem., Int. Ed. 2005, 44, 1704ꢀ1706. (c) Imada, Y.; Iida, H.;
Ono, S.; Masui, Y.; Murahashi, S.ꢀI. Chem. Asian. J. 2006, 1, 136ꢀ
1
2
47. (d) Chen, S.; Hossain, M. S.; Foss, F. W. Org. Lett. 2012, 14,
806ꢀ2809. (e) Chen, S.; Foss, F. W. Org. Lett. 2012, 14, 5150ꢀ5153.
–
–
–
(14) The stoichiometric oxygenation of I to I
3
via IO with the
(
f) Imada, Y.; Kitagawa, T.; Wang, H.ꢀK.; Komiya, N.; Naota, T.
analogous hydroperoxyflavin has been reported. Bruice, T. C.; Noar,
J. B.; Ball, S. S.; Venkataram, U. V. J. Am. Chem. Soc. 1983, 105,
Tetrahedron Lett. 2013, 54, 621ꢀ624. (g) Murahashi, S.ꢀI.; Zhang, D.;
Iida, H.; Miyawaki, T.; Uenaka, M.; Murano, K.; Meguro, K. Chem.
Commun. 2014, 50, 10295ꢀ10298. (h) Kotoučová, H.; Strnadová, I.;
Kovandová, M.; Chudoba, J.; Dvořáková, H.; Cibulka, R. Org. Bio-
mol. Chem. 2014, 12, 2137ꢀ2142.
2
452ꢀ2463.
15) There may be another possibility; Through the dynamic equiꢀ
librium, 8OOH forms 8 and H which may also participate in the
. The contribution of the inꢀsitu generated
could not be thoroughly ruled out, although the oxidation ability
(
2
O
2
–
oxygenation of I to give I
H O
2 2
2
(
5) For recent examples of other flavinꢀcatalyzed oxidative transꢀ
formations with molecular oxygen: (a) Imada, Y.; Iida, H.; Naota, T.
J. Am. Chem. Soc. 2005, 127, 14544ꢀ14545. (b) Imada, Y.; Kitagawa,
T.; Ohno, T.; Iida, H.; Naota, T. Org. Lett. 2010, 12, 32ꢀ35. (c)
Teichert, J. F.; den Hartog, T.; Hanstein, M.; Smit, C.; ter Horst, B.;
HernandezꢀOlmos, V.; Feringa, B. L.; Minnaard, A. J. ACS Catal.
4
of flavin hydroperoxide is 10 times stronger than H
fact, H promoted the present ring formation in the absence of the
2 2
O (ref. 14). In
2
O
2
flavin catalyst although the yield was moderate (Scheme S3, Supportꢀ
ing Information).
(16) 5ꢀAminopyrazoles have been widely utilized in synthetic inꢀ
termediates and pharmaceutical agents. For reviews, see: (a) Abu
Elmaati, T. M.; ElꢀTaweel, F. M. J. Heterocyclic Chem. 2004, 41,
2
011, 1, 309ꢀ315. (d) Iwahana, S.; Iida, H.; Yashima, E. Chem. Eur.
J. 2011, 17, 8009ꢀ8013. (e) Chen, S.; Hossain, M. S.; Foss, F. W. ACS
Sus. Chem. Eng. 2013, 1, 1045ꢀ1051. (f) Murray, A. T.; Dowley, M.
J. H.; PradauxꢀCaggiano, F.; Baldansuren, A.; Fielding, A. J.; Tuna,
F.; Hendon, C. H.; Walsh, A.; LloydꢀJones, G. C.; John, M. P.; Carꢀ
bery, D. R. Angew. Chem., Int. Ed. 2015, 54, 8997ꢀ9000. (g)
Muhldorf, B.; Wolf, R. Angew. Chem., Int. Ed. 2016, 55, 427ꢀ430. (h)
Neveselý, T.; Svobodová, E.; Chudoba, J.; Sikorski, M.; Cibulka, R.
Adv. Synth. Catal. 2016, 358, 1654ꢀ1663. (i) Hartman, T.; Cibulka, R.
Org. Lett. 2016, 18, 3710ꢀ3713. (j) Zhu, C. J.; Li, Q.; Pu, L. L.; Tan,
Z. T.; Guo, K.; Ying, H. J.; Ouyang, P. K. Acs Catal. 2016, 6, 4989ꢀ
1
09ꢀ134; (b) Aggarwal, R.; Kumar, V.; Kumar, R.; Singh, S. P.
Beilstein J. Org. Chem. 2011, 7, 179ꢀ197.
4
994. (k) Hering, T.; Mühldorf, B.; Wolf, R.; König, B. Angew.
Chem., Int. Ed. 2016, 55, 5342ꢀ5345.
ACS Paragon Plus Environment