Paper
NJC
7 J. Fu, Q. Xu, J. Low, C. Jiang and J. Yu, Appl. Catal., B, 2019,
243, 556–565.
8 Y. Wei, J. Wang, R. Yu, J. Wan and D. Wang, Angew. Chem.,
Int. Ed., 2019, 131, 1436–1440.
9 Q. Xiang, J. Yu, W. Wang and M. Jaroniec, Chem. Commun.,
2011, 47, 6906–6908.
10 S. Gong, J. Fan, V. Cecen, C. Huang, Y. Min, Q. Xu and H. Li,
Chem. Eng. J., 2021, 405, 126913.
molecular cocatalyst reduces to the Co(I) oxidation state. Further-
more, Co(I) species interact with H+ and Co(III)H are generated.
Further protonation of cobalt hydride species could mediate the
consequent production of H2 (Scheme 1). On the other hand,
photogenerated holes scavenge the sacrificial electron donors and
a systematic cycle runs smoothly. Therefore, a dramatic increase
in the photocatalytic H2 production of the composite photocatalyst
was observed.
11 Q. Wang, J. Li, Y. Bai, J. Lian, H. Huang, Z. Li, Z. Lei and
W. Shangguan, Green Chem., 2014, 16, 2728–2735.
12 X. Ning, W. Zhen, Y. Wu and G. Lu, Appl. Catal., B, 2018,
226, 373–383.
13 T. Simon, M. T. Carlson, J. K. Stolarczyk and J. Feldmann,
ACS Energy Lett., 2016, 1, 1137–1142.
14 X. Zhang, D. Jing, M. Liu and L. Guo, Catal. Commun., 2008,
9, 1720–1724.
15 Y. Yang, O. Chen, A. Angerhofer and Y. C. Cao, J. Am. Chem.
Soc., 2006, 128, 12428–12429.
16 X. Li, J. Yu, J. Low, Y. Fang, J. Xiao and X. Chen, J. Mater.
Chem. A, 2015, 3, 2485–2534.
17 Y. Xu and B. Zhang, Catal. Sci. Technol., 2015, 5, 3084–3096.
18 Z. Sun, H. Chen, L. Zhang, D. Lu and P. Du, J. Mater. Chem. A,
2016, 4, 13289–13295.
19 R. M. Irfan, M. H. Tahir, S. A. Khan, M. A. Shaheen, G. Ahmed
and S. Iqbal, J. Colloid Interface Sci., 2019, 557, 1–9.
20 L. Li, J. Wu, B. Liu, X. Liu, C. Li, Y. Gong, Y. Huang and
L. Pan, Catal. Today, 2018, 315, 110–116.
21 Q. Zhao, J. Sun, S. Li, C. Huang, W. Yao, W. Chen, T. Zeng,
Q. Wu and Q. Xu, ACS Catal., 2018, 8, 11863–11874.
22 M. Yang, J. E. Yarnell, E. R. Karim and F. N. Castellano, ACS
Appl. Energy Mater., 2020, 3, 1842–1853.
Conclusions
In summary, a molecular cocatalyst was synthesized by a facile
method and successfully employed with a composite photocatalyst
CdS/Ni3C NRs for highly improved photocatalytic H2 evolution. The
photocatalytic activity of the system was boosted to 750 mmol hÀ1
due to the efficient electron capturing ability of molecular cocata-
lyst PX1. The highest apparent quantum yield of 53.2% was
attained using monochromatic 420 nm light. The present photo-
catalytic system demonstrated excellent durability and long-term
stability reached to 80 hours under visible light irradiation. PL
spectra and photocurrent responses inferred the swift electron
transfer at the interface of cocatalysts and CdS NRs, which
hindered the rapid recombination of charge carriers. Interestingly,
Ni3C and PX1 synergistically enhanced the H2 production ability of
CdS NRs, which also reinforced the stability by inhibiting the
photocorrosion process. This study presents an excellent strategy to
build highly productive and non-noble metal photocatalytic system
for H2 evolution having potential large-scale applications.
Conflicts of interest
23 R. S. Khnayzer, B. S. Olaiya, K. A. El Roz and F. N. Castellano,
ChemPlusChem, 2016, 81, 1015.
There are no conflicts to declare.
24 S. Ma, Y. Deng, J. Xie, K. He, W. Liu, X. Chen and X. Li, Appl.
Catal., B, 2018, 227, 218–228.
25 K. He, J. Xie, Z. Q. Liu, N. Li, X. Chen, J. Hu and X. Li,
J. Mater. Chem. A, 2018, 6, 13110–13122.
26 X. Zong, H. Yan, G. Wu, G. Ma, F. Wen, L. Wang and C. Li,
J. Am. Chem. Soc., 2008, 130, 7176–7177.
27 B. Ma, H. Xu, K. Lin, J. Li, H. Zhan, W. Liu and C. Li,
ChemSusChem, 2016, 9, 820–824.
Acknowledgements
This work was supported by the National Natural Science
Foundation of China [grant number 21703147 and U1401248,
51850410508]; the Natural Science Foundations for the Young
Scientist of Jiangsu Province [grant number BK20170338]; The
Open Fund of Jiangsu Key Laboratory of Materials and Tech-
nology for Energy Conversion [grant number MTEC-2017M01].
28 D. Jiang, Z. Sun, H. Jia, D. Lu and P. Du, J. Mater. Chem. A,
2016, 4, 675–683.
29 A. Galinska and J. Walendziewski, Energy Fuels, 2005, 19,
1143–1147.
Notes and references
1 A. Fujishima and K. Honda, Nature, 1972, 238, 37–38.
2 S. Wang, B. Zhu, M. Liu, L. Zhang, J. Yu and M. Zhou, Appl.
Catal., B, 2019, 243, 19–26.
30 H. Chen, Z. Sun, S. Ye, D. Lu and P. Du, J. Mater. Chem. A,
2015, 3, 15729–15737.
31 R. M. Irfan, D. Jiang, Z. Sun, D. Lu and P. Du, Dalton Trans.,
2016, 45, 12897–12905.
3 Z. Wang, Y. Inoue, T. Hisatomi, R. Ishikawa, Q. Wang,
T. Takata, S. Chen, N. Shibata, Y. Ikuhara and K. Domen, 32 Z. Sun, H. Zheng, J. Li and P. Du, Energy Environ. Sci., 2015, 8,
Nat. Catal., 2018, 1, 756. 2668–2676.
4 Z. Wang, C. Li and K. Domen, Chem. Soc. Rev., 2019, 48, 2109–2125. 33 Y. Zhang, Y. Zhu, Y. Cao, D. Li, Z. Zhang, K. Wang, F. Ding,
5 S. Xu, S. Gong, H. Jiang, P. Shi, J. Fan, Q. Xu and Y. Min,
X. Wang, D. Meng and L. Fan, RSC Adv., 2016, 6,
Appl. Catal., B, 2020, 267, 118661.
81989–81994.
6 S. Gong, Z. J. Jiang, P. Shi, J. Fan, Q. Xu and Y. Min, Appl. 34 C. Li, W. Fan, H. Lu, Y. Ge, H. Bai and W. Shi, New J. Chem.,
Catal., B, 2018, 238, 318–327.
2016, 40, 2287–2295.
This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2021
5566
| New J. Chem., 2021, 45, 5561–5567