10.1002/anie.202011301
Angewandte Chemie International Edition
COMMUNICATION
To summarize, employing the π-basic fragment (1)Ni, we isolated
3 by reaction of 2 with N2O. The rare η2-N,N’-coordination mode
of the N2O ligand in 3 was proved by single-crystal X-ray
crystallography, as well as 15N CP-MAS NMR and IR
spectroscopy aided by 15N isotopic enrichment. The isostructural,
η2-CO2 complex 5 was also synthesized, allowing a direct
comparison of the metal binding properties of the two
isoelectronic small molecules of environmental relevance.
Computational studies indicate that π-acceptance is the main
contributor to N2O binding in 3, and place the η2-N,N’-metal
binding ability of this ligand to the (1)Ni fragment in-between that
of CO2 and ethylene. In general, the η2-N,N’-binding ability of N2O
to transition metals is found to be comparable to, or slightly better
than that of CO2. This demonstrates that the need for a strongly
π-basic metal fragment comes not so much from the frequently
invoked “poor σ-donating and π-accepting properties” of N2O, but
from the need to stabilize η2-N,N’-coordination over the
thermodynamically more favorable metal-oxo formation. The well-
known oxidizing character of N2O may be mostly, if not entirely
responsible for the scarcity of η2-metal complexes employing this
ligand, and more of such complexes are expected to be in reach
in complex designs featuring the right balance of π-basicity and
resilience to oxidation at the metal center and associated ligands.
Acknowledgements
Financial support was provided by the Universities of Calgary,
Jyväskylä, and Alberta, as well as the NSERC of Canada in the
form of Discovery Grants #2019-07195 to R.R. and #2019-06816
to R.E.W. The project received funding from the European
Research Council under the EU's Horizon 2020 programme
(grant #772510 to H.M.T). R.E.W acknowledges the CFI and the
Government of Alberta for NMR Facilities support. Computational
resources were provided by the Finnish Grid and Cloud Infra-
structure
(persistent
identifier
urn:nbn:fi:research-infras-
2016072533) and the University of Calgary.
Conflict of interest
The authors declare no conflict of interest.
Keywords: nickel • nitrous oxide • carbon dioxide • N-
heterocyclic carbene • back bonding
[1]
World Health Organization. World Health Organization model list of
essential medicines: 21st list 2019. 2019 Geneva: World Health
Organization.
T. Kuschel, C. Näther, V. K. K. Praneeth, O. Sander, N. Lehnert, Inorg.
Chem. 2004, 43, 6979−6994.
[18] a) D. F.-T. Tuan, R. Hoffmann, Inorg. Chem. 1985, 24, 871−876; b) H.
Yu, G. Jia, Z. Lin, Organometallics 2008, 27, 3825–3833; c) J. G. Andino,
K. G. Caulton, J. Am. Chem. Soc. 2011, 133, 12576-12576.
[19] C. B. Pamplin, E. S. F. Ma, N. Safari, S. J. Rettig, B. R. James, J. Am.
Chem. Soc. 2001, 123, 8596–8597.
[2]
[3]
M. Laing, S. Afr. J. Sci. 2003, 99, 109-114.
V. Zakirov, M. Sweeting, T. Lawrence, J. Sellers, Acta Astronautica, 2001,
48, 353–362.
[4]
[5]
V. N. Parmon, G. I. Panov, A. Uriarte, A. S. Noskov, Catal. Today 2005,
100, 115–131.
[20] a) S. Hu, T. M. Apple, J. Catal. 1996, 158, 199-204; b) V. M. Mastikhin,
I. L. Mudrakovsky, S. V. Filimonova, Chem. Phys. Lett. 1988, 149, 175-
179; c) V. M. Mastikhin, I. L. Mudrakovsky, S. V. Filimonova, Zeolites
1990, 10, 593-597.
a) N. Lehnert, H. T. Dong, J. B. Harland, A. P. Hunt, C. J. White, Nat.
Rev. Chem. 2018, 2, 278–289.
[6]
[7]
a) J. L. Grenfell, Phys. Rep. 2017, 713, 1-17.
A. R. Ravishankara, J. S. Daniel, R. W. Portmann, Science 2009, 326,
123–125.
[21] N. A. Piro, M. F. Lichterman, W. H. Harman, C. J. Chang, J. Am. Chem.
Soc. 2011, 133, 2108–2111.
[8]
[9]
a) A. H. H. Chang, D. R. Yarkony, J. Chem. Phys. 1993, 99, 6824-6831;
b) W. C. Trogler, Coord. Chem. Rev. 1999, 187, 303-327.
M. J. Prather, J. Hsu, N. M. DeLuca, C. H. Jackman, L. D. Oman, A. R.
Douglass, E. L. Fleming, S. E. Strahan, S. D. Steenrod, O. A. Søvde, I.
S. A. Isaksen, L. Froidevaux, B. Funke, J. Geophys. Res. Atmos. 2015,
120, 5693–5705.
[22] M. R. Gyton, B. Leforestier, A. B. Chaplin, Angew. Chem. Int. Ed. 2019,
58, 15295-15298.
[23] V. Zhuravlev, P. J. Malinowski, Angew. Chem. Int. Ed. 2018, 57, 11697–
11700.
[24] b) A. Heyden, B. Peters, A. T. Bell, F. J. Keil, J. Phys. Chem. B 2005,
109, 1857−1873; a) C.-L. Hu, Y. Chen, J.-Q. Li, Y.-F. Zhang, Chem. Phys.
Lett. 2007, 438, 213–217.
[10] K. Severin, Chem. Soc. Rev. 2015, 44, 6375–6386.
[11] M. Konsolakis, ACS Catal. 2015, 5, 6397−6421.
[25] A. Pomowski, W. G. Zumft, P. M. H. Kroneck, O. Einsle, Nature 2011,
477, 234−237.
[12] a) E. Otten, R. C. Neu, D. W. Stephan, J. Am. Chem. Soc. 2009, 131,
9918–9919; b) R. C. Neu, E. Otten, A. Lough, D. W. Stephan, Chem. Sci.
2011, 2, 170–176; c) M. J. Kelly, J. Gilbert, R. Tirfoin, S. Aldridge, Angew.
Chem., Int. Ed. 2013, 52, 14094–14097.
[26] C. C. Mokhtarzadeh, C. Chan, C. E. Moore, A. L. Rheingold, J. S.
Figueroa, J. Am. Chem. Soc. 2019, 141, 15003−15007.
[27] C. Gendy, A. Mansikkamäki, J. Valjus, J. Heidebrecht, P. C.-Y. Hui, G.
M. Bernard, H. M. Tuononen, R. E. Wasylishen, V. K. Michaelis, R.
Roesler, Angew. Chem. Int. Ed. 2019, 58, 154–158.
[13] a) A. G. Tskhovrebov, E. Solari, M. D. Wodrich, R. Scopelliti, K. Severin,
Angew. Chem. Int. Ed. 2012, 51, 232–234; b) A. G. Tskhovrebov, B.
Vuichoud, E. Solari, R. Scopelliti, K. Severin, J. Am. Chem. Soc. 2013,
135, 9486–9492.
[28] a) T. Ziegler, Inorg. Chem. 1985, 24, 1547-1552; b) L. P. Wolters, F. M.
Bickelhaupt in Structure and Bonding (Eds.: O. Eisenstein, S.
Macgregor), Springer, Berlin, 2014.
[14] a) G. A. Vaughan, P. B. Rupert, G. L. Hillhouse, J. Am. Chem. Soc. 1987,
109, 5538−5539; b) G. A. Vaughan, C. D. Sofield, G. L. Hillhouse, A. L.
Rheingold, J. Am. Chem. Soc. 1989, 111, 5491−5493.
[29] a) C. Massera, G. Frenking, Organometallics 2003, 22, 2758-2765; b) F.
Hering, J. Nitsch, U. Paul, A. Steffen, F. M. Bickelhaupt, U. Radius, Chem.
Sci. 2015, 6, 1426–1432.
[15] a) A. Pastor, A. Montilla, F. Galindo, Adv. Organomet. Chem. 2017, 68,
1-91; b) A. Paparo, J. Okuda, Coord. Chem. Rev. 2017, 334, 136-149.
[16] W. B. Tolman, Angew. Chem. Int. Ed. 2010, 49, 1018-1024.
[17] a) J. N. Armor, H. Taube, J. Am. Chem. Soc. 1969, 91, 6874-6876; b) F.
Bottomley, W. V. F. Brooks, Inorg. Chem. 1977, 16, 501-502; c) F. Paulat,
[30] A. J. Arduengo, R. L. Harlow, M. Kline, J. Am. Chem. Soc. 1991, 113,
361–363.
[31] a) P. B. Armentrout, L. F. Halle, J. L. Beauchamp, J. Chem. Phys. 1982,
76, 2449–2457; b) L. Zhao, Y. Wang, W. Guo, H. Shan, X. Lu, T. Yang,
J. Phys. Chem. A 2008, 112, 5676–5683.
4
This article is protected by copyright. All rights reserved.