Ruthenium-Catalyzed Cross-Coupling of 7-Azabenzonorbornadienes
with Alkynes. An Entry to 3a,9b-Dihydrobenzo[g]indoles
Alphonse Tenaglia* and Sylvain Marc
Laboratoire de Synthe`se Asyme´trique, UMR 6180 CNRS, UniVersite´ d’Aix-Marseille P. Ce´zanne,
Faculte´ des Sciences et Techniques de St. Je´roˆme, Case A62, AVenue Escadrille Normandie Niemen,
13397 Marseille Cedex 20, France
alphonse.tenaglia@uniV-cezanne.fr
ReceiVed October 17, 2007
Electron-rich half-sandwich ruthenium complex CpRuI(PPh3)2, generated in situ, catalyzed the coupling
reaction of 7-azabenzonorbornadienes with alkynes to form 3a,9b-dihydrobenzo[g]indoles. This
transformation involves the cleavage of one C-N bond of the bicyclic alkene and formation of two
(C-C and C-N) bonds at the acetylenic carbons. The scope and limitations of the reaction are addressed
according to the substitution patterns of the alkyne and of the substituent at the nitrogen atom of the
azabenzonorbornadiene.
Introduction
although these structures are interesting precursors of indoles
through mild oxidative processes. For instance, the unusual 3a,-
7a-dihydroindole framework (as a substructure of dihydrocar-
bazoles) has been available by stoichiometric transition-metal-
mediated processes such as the intramolecular amination of
tricarbonyl(η4-cyclohexa-1,3-diene)iron complexes5 or the di-
carbonyl(η5-cyclopentadienyl)cobalt-mediated intermolecular [2
+ 2 + 2] cycloaddition of alkynes to the pyrrole 2,3-double
The widespread indole nucleus present in natural products,1
as well as in therapeutic agents,2 still remains one of the most
attractive targets in heterocyclic synthesis. Besides traditional
synthetic routes,3 transition-metal-catalyzed methods4 provided
remarkable improvements regarding efficiency, structural varia-
tions, and functional group compatibility to this important class
of heterocycles. Hydroindoles have received less attention,
(4) For recent references, see: (a) Kusama, H.; Miyashita, Y.; Takaya,
J.; Iwasawa, N. Org. Lett. 2006, 8, 289-292. (b) McLaughlin, M.; Palucki,
M.; Davies, I. W. Org. Lett. 2006, 8, 3307-3310. (c) Ragaini, F.; Rapetti,
A.; Visentin, E.; Monzani, M.; Caselli, A.; Cenini, S. J. Org. Chem. 2006,
71, 3748-3753. (d) Jia, Y.; Zhu, J. J. Org. Chem. 2006, 71, 7826-7834.
(e) Clawson, R. W. J.; Deavers, R. E. I.; Akhmedov, N. G.; So¨derberg, B.
C. G. Tetrahedron 2006, 62, 10829-10834. (f) Shen, Z.; Lu, X. Tetrahedron
2006, 62, 10896-10899. (g) Fayol, A.; Fang, Y.-Q.; Lautens, M. Org. Lett.
2006, 8, 4203-4206. (h) Nagamochi, M.; Fang, Y.-Q.; Lautens, M. Org.
Lett. 2007, 9, 2955-2958. (i) Whitney, S.; Grigg, R.; Derrick, A.; Keep,
A. Org. Lett. 2007, 9, 3299-3302. (j) Barluenga, J.; Jime´nez-Aquino, A.;
Valde´s, C.; Aznar, F. Angew. Chem., Int. Ed. 2007, 46, 1529-1532. (k)
Cariou, K.; Ronan, B.; Serge Mignani, S.; Fensterbank, L.; Malacria, M.
Angew. Chem., Int. Ed. 2007, 46, 1881-1884. (l) Trost, B. M.; McClory,
A. Angew. Chem., Int. Ed. 2007, 46, 2074-2077. (m) Ohno, H.; Ohta, Y.;
Oishi, S.; Fuji, N. Angew. Chem., Int. Ed. 2007, 46, 2295-2298. (n) Liu,
F.; Ma, D. J. Org. Chem. 2007, 72, 4844-4850. (o) Chiba, S.; Hattori, G.;
Narasaka, K. Chem. Lett. 2007, 36, 52-53. For reviews on Pd-catalyzed
indole syntheses, see: (p) Zeni, G.; Larock, R. C. Chem. ReV. 2006, 106,
4644-4680. (q) Patil, S.; Buolamwini, J. K. Curr. Org. Synth. 2006, 3,
477-498. (r) Cacchi, S.; Fabrizi, G. Chem. ReV. 2005, 105, 2873-2920.
(s) Li, J. J.; Gribble, G. W. Palladium in Heterocyclic Chemistry: A Guide
for the Synthetic Chemist; Pergamon: Oxford, 2000; Chapter 3, pp 73-
181. (t) Hegedus, L. S. Angew. Chem., Int. Ed. Engl. 1988, 27, 1113-
1126.
(1) (a) Sundberg, R. J. The Chemistry of Indoles; Academic Press: New
York, 1970. (b) Sundberg, R. J. In ComprehensiVe Heterocyclic Chemistry;
Katritzky, A. R., Rees, C. W., Eds.; Pergamon: Oxford, 1984; Vol. 4, pp
313-376. (c) Sundberg, R. J. Indoles; Academic Press: London. 1996. (d)
Joule, J. A. In Science of Synthesis: Houben-Weyl Methods of Molecular
Transformations; Thomas, E. J., Ed.; Georg Thieme: Stuttgart, 2000; Vol.
10, pp 361-652. (e) Gribble, G. W. J. Chem. Soc., Perkin Trans. 1 2000,
1045-1075. (f) Higuchi, K.; Kawasaki, T. Nat. Prod. Rep. 2007, 24, 843-
868 and references therein.
(2) (a) Tang, L.; Huger, F. P.; Klein, J. T.; Davis, L.; Martin, L. L.;
Shimshock, S.; Effland, R. C.; Smith, C. P.; Kongsamut, S. Drug DeV.
Res. 1998, 44, 8-13. (b) Wolff, M. C.; Benvenga, M. J.; Calligaro, D. O.;
Fuller, R. W.; Gidda, J. S.; Hemrick-Luecke, S.; Lucot, J. B.; Nelson, D.
L.; Overshiner, C. D.; Leander, J. D. Drug DeV. Res. 1997, 40, 17-34. (c)
Kuethe, J. T.; Wong, A.; Qu, C.; Smitrovich, J.; Davies, I. W.; Hughes, D.
L. J. Org. Chem. 2005, 70, 2555-2567. (d) Van Zandt, M. C.; Jones, M.
L.; Gunn, D. E.; Geraci, L. S.; Jones, J. H.; Sawicki, D. R.; Sredy, J.; Jacot,
J. L.; DiCioccio, A. T.; Petrova, T.; Mitschler, A.; Podjarny, A. D. J. Med.
Chem. 2005, 48, 3141-3152.
(3) (a) Humphrey, G. R.; Kuethe, J. T. Chem. ReV. 2006, 106, 2875-
2911. (b) Joule, J. A.; Mills, K.; Smith, G. F. Heterocyclic Chemistry;
Stanley Thornes Ltd.: Cheltenham, 1995. (c) Gilchrist, T. L. J. Chem. Soc.,
Perkin Trans. 1 2001, 2491-2515. (d) Eicher, T.; Hauptmann S. The
Chemistry of Heterocycles; Thieme: Stuttgart, 1995; pp 99-110.
10.1021/jo702248r CCC: $40.75 © 2008 American Chemical Society
Published on Web 01/15/2008
J. Org. Chem. 2008, 73, 1397-1402
1397