Inorganic Chemistry
Article
Decomposition of VX and EA-2192 was followed simulta-
neously via 31P NMR spectroscopy in the presence of UiO-67.
In pH 10 buffer, initial t1/2 values for decomposition of the
(7) Sidell, F. R.; Borak, J. Ann. of Emerg. Med. 1992, 21, 865−871.
(
(
8) Yang, Y.-C. Acc. Chem. Res. 1999, 32, 109−115.
9) Aubert, S. D.; Li, Y.; Raushel, F. M. Biochemistry 2004, 43, 5707−
715.
5
(
10) Smith, B. M. Chem. Soc. Rev. 2008, 37, 470−478.
2
of VX was observed after 30 min, while the more persistent EA-
(11) Afriat-Jurnou, L.; Jackson, C. J.; Tawfik, D. S. Biochemistry 2012,
5
(
1, 6047−6055.
12) Bigley, A. N.; Raushel, F. M. Biochim. Biophys. Acta, Proteins
Proteomics 2013, 1834, 443−453.
13) Gordon, R. K.; Clarkson, E. D. CHAPTER 71: Rapid
2
(
Decontamination of Chemical Warfare Agents. In Handbook of
Toxicology of Chemical Warfare Agents; Gupta, R. C., Ed.; Academic
Press: San Diego, 2009; pp 1069−1081.
CONCLUSION
In conclusion, a series of Zr -based MOFs, including UiO-67,
■
(14) Furukawa, H.; Cordova, K. E.; O’Keeffe, M.; Yaghi, O. M.
6
Science 2013, 341, 1230444.
15) Lee, J.; Farha, O. K.; Roberts, J.; Scheidt, K. A.; Nguyen, S. T.;
Hupp, J. T. Chem. Soc. Rev. 2009, 38, 1450−1459.
16) Czaja, A. U.; Trukhan, N.; Muller, U. Chem. Soc. Rev. 2009, 38,
284−1293.
17) DeCoste, J. B.; Peterson, G. W. Chem. Rev. 2014, 114, 5695−
727.
18) Barea, E.; Montoro, C.; Navarro, J. A. R. Chem. Soc. Rev. 2014,
3, 5419−5430.
(19) Lopez-Maya, E.; Montoro, C.; Rodríguez-Albelo, L. M.; Aznar
Cervantes, S. D.; Lozano-Perez, A. A.; Cenís, J. L.; Barea, E.; Navarro,
UiO-67-NH , and UiO-67-N(Me) , is capable of hydrolyzing
2
2
(
the CWA VX. Importantly, the P−S bond (and not the P−O
bond) is selectively hydrolyzed producing the preferred, low-
toxicity products EMPA and DESH. One of the MOFs, UiO-
(
1
(
5
(
4
6
7-N(Me) , hydrolyzes VX in a pH 10 buffered solution with
2
remarkable efficiency (initial t1/2 of 1.8 min that rivals those of
the best known abiotic materials). Intriguingly, the catalytic
hydrolysis also works in the absence of buffer and also destroys
the toxic product EA-2192. We look forward to discovering
́
why these Zr -based MOFs are so potent for the destruction of
́
6
phosphonate linkages, and those results will be reported in due
course.
J. A. R. Angew. Chem., Int. Ed. 2015, 54, 6790−6794.
(20) Katz, M. J.; Mondloch, J. E.; Totten, R. K.; Park, J. K.; Nguyen,
S. T.; Farha, O. K.; Hupp, J. T. Angew. Chem., Int. Ed. 2014, 53, 497−
501.
ASSOCIATED CONTENT
Supporting Information
■
(
21) Katz, M. J.; Moon, S.-Y.; Mondloch, J. E.; Beyzavi, M. H.;
Stephenson, C. J.; Hupp, J. T.; Farha, O. K. Chem. Sci. 2015, 6, 2286−
291.
22) Mondloch, J. E.; Katz, M. J.; Isley Iii, W. C.; Ghosh, P.; Liao, P.;
*
S
2
(
Bury, W.; Wagner, G. W.; Hall, M. G.; DeCoste, J. B.; Peterson, G. W.;
Snurr, R. Q.; Cramer, C. J.; Hupp, J. T.; Farha, O. K. Nat. Mater. 2015,
14, 512−516.
Hydrolysis mechanisms, conversion versus time data,
natural logarithm plots, NMR spectra for hydrolysis, and
dynamic light scattering data (PDF)
(23) Moon, S.-Y.; Liu, Y.; Hupp, J. T.; Farha, O. K. Angew. Chem., Int.
Ed. 2015, 54, 6795−6799.
(
(
(
24) Raushel, F. M. Nature 2011, 469, 310−311.
AUTHOR INFORMATION
■
25) Ott, R.; Kram
̈
er, R. Angew. Chem., Int. Ed. 1998, 37, 1957−1960.
26) Cavka, J. H.; Jakobsen, S.; Olsbye, U.; Guillou, N.; Lamberti, C.;
*
Bordiga, S.; Lillerud, K. P. J. Am. Chem. Soc. 2008, 130, 13850−13851.
(27) Wang, C.; Xie, Z.; deKrafft, K. E.; Lin, W. J. Am. Chem. Soc.
Notes
2
(
011, 133, 13445−13454.
28) Feng, D.; Gu, Z.-Y.; Li, J.-R.; Jiang, H.-L.; Wei, Z.; Zhou, H.-C.
The authors declare no competing financial interest.
Angew. Chem., Int. Ed. 2012, 51, 10307−10310.
ACKNOWLEDGMENTS
■
(
(
29) Kim, M.; Cohen, S. M. CrystEngComm 2012, 14, 4096−4104.
O.K.F. and J.T.H. gratefully acknowledge DTRA for financial
support (Grant HDTRA-1-10-0023). G.W.W., G.W.P., and
J.B.D. gratefully acknowledge the Joint Science Technology
Office for Chemical and Biological Defense (JSTO-CBD) for
financial support under Program BA13PHM210. We thank Mr.
McGuirk for sharing the synthesis procedure that we used to
synthesize some of the organic linkers.
30) Mondloch, J. E.; Bury, W.; Fairen-Jimenez, D.; Kwon, S.;
DeMarco, E. J.; Weston, M. H.; Sarjeant, A. A.; Nguyen, S. T.; Stair, P.
C.; Snurr, R. Q.; Farha, O. K.; Hupp, J. T. J. Am. Chem. Soc. 2013, 135,
1
0294−10297.
(31) Furukawa, H.; Gan
́
dara, F.; Zhang, Y.-B.; Jiang, J.; Queen, W. L.;
Hudson, M. R.; Yaghi, O. M. J. Am. Chem. Soc. 2014, 136, 4369−4381.
(32) Planas, N.; Mondloch, J. E.; Tussupbayev, S.; Borycz, J.;
Gagliardi, L.; Hupp, J. T.; Farha, O. K.; Cramer, C. J. J. Phys. Chem.
Lett. 2014, 5, 3716−3723.
REFERENCES
■
(
33) Bandyopadhyay, I.; Kim, M. J.; Lee, Y. S.; Churchill, D. G. J.
Phys. Chem. A 2006, 110, 3655−3661.
34) Bandosz, T. J.; Laskoski, M.; Mahle, J.; Mogilevsky, G.;
Peterson, G. W.; Rossin, J. A.; Wagner, G. W. J. Phys. Chem. C 2012,
16, 11606−11614.
35) Marciano, D.; Columbus, I.; Elias, S.; Goldvaser, M.; Shoshanim,
(
1) Kim, K.; Tsay, O. G.; Atwood, D. A.; Churchill, D. G. Chem. Rev.
2
011, 111, 5345−5403.
(
(
9
(
(
2) Sambrook, M. R.; Notman, S. Chem. Soc. Rev. 2013, 42, 9251−
267.
1
(
3) Enserink, M. Science 2013, 341, 1050−1051.
4) Pita, R.; Domingo, J. Toxics 2014, 2, 391−402.
(
5) Watson, A.; Opresko, D.; Young, R.; Hauschild, V.; King, J.;
O.; Ashkenazi, N.; Zafrani, Y. J. Org. Chem. 2012, 77, 10042−10049.
(36) Marciano, D.; Goldvaser, M.; Columbus, I.; Zafrani, Y. J. Org.
Chem. 2011, 76, 8549−8553.
(37) While very impressive half-lives of approximately 1 min have
been observed for the degradation of VX using Zr(OH) , the reaction
Bakshi, K. CHAPTER 6: Organophosphate Nerve Agents. In
Handbook of Toxicology of Chemical Warfare Agents; Gupta, R. C.,
Ed.; Academic Press: San Diego, 2009; pp 43−67.
(
6) Anzueto, A.; deLemos, R. A.; Seidenfeld, J.; Moore, G.; Hamil,
4
H.; Johnson, D.; Jenkinson, S. G. Toxicol. Sci. 1990, 14, 676−687.
is not catalytic with respect to the total amount of Zr present. Excess
D
Inorg. Chem. XXXX, XXX, XXX−XXX