Page 5 of 7
Journal of the American Chemical Society
doping with Mg(OMe)2 (Figures 5, S18 and Table S3). Doped
ACKNOWLEDGMENT
MOF-808@Mg(OMe)2 (t1/2 11.6 min, TOF 0.06 min-1) exhibits
a better performance towards P-F hydrolysis in the GD
degradation (MOF:GD 1:2 ratio) compared to MOF-808 (t1/2
34.7 min, TOF 0.02 min-1) (Figure 5a). Noteworthy, MOF-
808@Mg(OMe)2 materials gives rise to instantaneous
hydrolysis of the P-S bond of VX (MOF:VX ratio 1:4) in 1:1
water ethanol mixture whereas pristine MOF-808 (t1/2 5.0
min, TOF 0.14 min-1) possesses a moderate activity in
unbuffered solutions (Figure 5b).
1
2
3
4
5
6
7
8
The authors thanks Spanish MINECO (CTQ2017-84692-R),
EU Feder Funding, ADD’s research project (#912412201).
Comunidad de Madrid TALENTO grant (2017-T1/IND5148),
SOLEIL ROCK synchrotron radiation beamline (20180480)
and Dr. Valerie Briois for assistance.
REFERENCES
(1) Worek, F.; Thiermann, H.; Szinicz, L.; Eyer, P. Kinetic analysis
of interactions between human acetylcholinesterase, structurally
different organophosphorus compounds and oximes. Biochemical
Pharmacology 2004, 68, 2237-2248, DOI: 10.1016/j.bcp.2004.07.038.
(2) Organisation for the Prohibition of Chemical Weapons
2019.
(3) Okumura, T.; Takasu, N.; Ishimatsu, S.; Miyanoki, S.;
Mitsuhashi, A.; Kumada, K.; Tanaka, K.; Hinohara, S. Report on 640
Victims of the Tokyo Subway Sarin Attack. Annals of Emergency
Medicine 1996, 28, 129-135, DOI: 10.1016/S0196-0644(96)70052-5.
(4) United Nations Mission to Investigate Allegations of the Use
of Chemical Weapons in the Syrian Arab Republic United Nations
Mission to Investigate Allegations of the Use of Chemical Weapons
in the Syrian Arab Republic. 2013.
(5) Vellingiri, K.; Philip, L.; Kim, K. Metal–organic frameworks as
media for the catalytic degradation of chemical warfare agents.
Coordination Chemistry Reviews 2017, 353, 159-179, DOI:
10.1016/j.ccr.2017.10.010.
(6) Liu, Y.; Howarth, A. J.; Vermeulen, N. A.; Moon, S.; Hupp, J. T.;
Farha, O. K. Catalytic degradation of chemical warfare agents and
their simulants by metal-organic frameworks. Coordination
Chemistry Reviews 2016, 346, 101-111. DOI: 10.1016/j.ccr.2016.11.008.
(7) Barea, E.; Montoro, C.; Navarro, J. A. R. Toxic gas removal -
metal-organic frameworks for the capture and degradation of toxic
gases and vapours. Chemical Society Reviews 2014, 43, 5419-543, DOI:
10.1039/c3cs60475f.
(8) Bobbitt, N. S.; Mendonca, M. L.; Howarth, A. J.; Islamoglu, T.;
Hupp, J. T.; Farha, O. K.; Snurr, R. Q. Metal-organic frameworks for
the removal of toxic industrial chemicals and chemical warfare
agents. Chemical Society reviews 2017, 46, 3357-3385, DOI:
10.1039/c7cs00108h.
(9) Katz, M. J.; Mondloch, J. E.; Totten, R. K.; Park, J. K.; Nguyen,
S. T.; Farha, O. K.; Hupp, J. T. Simple and Compelling Biomimetic
Metal–Organic Framework Catalyst for the Degradation of Nerve
Agent Simulants. Angewandte Chemie 2014, 126, 507-511, DOI:
10.1002/ange.201307520.
(10) Li, P.; Klet, R. C.; Moon, S.; Wang, T. C.; Deria, P.; Peters, A.
W.; Klahr, B. M.; Park, H.; Al-Juaid, S. S.; Hupp, J. T.; Farha, O. K.
Synthesis of nanocrystals of Zr-based metal-organic frameworks with
csq-net: significant enhancement in the degradation of a nerve agent
simulant. Chemical communications 2015, 51, 10925-10928, DOI:
10.1039/C5CC03398E.
9
For NU-1000 the detoxication results are similar although
somewhat more moderate. Indeed, GD degradation by NU-
1000@Mg(OMe)2 1:4 (t1/2 15.7 min, TOF 0.044 min-1)
outperforms NU-1000 (t1/2 53 min, TOF 0.013 min-1). In the
case of VX the results show a closely related behavior of all
materials with NU-1000@Mg(OMe)2 1:2 (t1/2 10.1 min, TOF
0.068 min-1) slightly outperforming pristine NU-1000 (t1/2 19
min, TOF 0.0363 min-1) (Figure S18). These results are
indicative that the improvement of NU-1000 activity upon
Mg(OMe)2 doping seems to be more limited compared to
MOF-808 material. The different behavior of MOF-
808@Mg(OMe)2 and NU-1000@Mg(OMe)2 can be
explained on the basis of the extent of Mg(OMe)2 doping on
both systems. As above mentioned, Monte Carlo
computational modelling for the incorporation of both the
doping agent and the toxic molecules on the pore structure
of MOF-808 shows that both reagent and toxic molecules are
located in the mesopore cavities (Figures S20-S22). By
contrast, NU-1000 doping agent is incorporated exclusively
onto the mesopore channels while toxic molecules can
diffuse through both micropores and mesopores (Figures
S20-S22). Consequently, for MOF-808@Mg(OMe)2 the toxic
molecules are fully exposed to MgZr5O2(OH)6 SBUs of
mesoporous cavities while for NU-1000@Mg(OMe)2 the
lower extent of magnesium doping gives rise to a lower
exposition to MgZr5O2(OH)6 SBUs with a concomitant lower
benefit of Mg(OMe)2 functionalization. We believe that the
increased basicity (increased nucleophilicity of OH-/O2-
residues) and charge gradients in the MgZr5O2(OH)6
heteronuclear cluster gives rise to a synergistic effect
affording polar P-X bonds (X= F, OR, SR) hydrolitic cleavage.
Summarizing, the different accessibility of the UiO-66,
MOF-808 and NU-1000 pore structures determine both their
reactivity towards [Mg(OMe)2(MeOH)2]4 and their
detoxification properties.
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
ASSOCIATED CONTENT
Supporting Information
(11) Moon, S.; Liu, Y.; Hupp, J. T.; Farha, O. K. Instantaneous
Hydrolysis of Nerve-Agent Simulants with
Zirconium-Based Metal–Organic Framework. Angewandte Chemie
International Edition 2015, 54, 6795-6799, DOI:
10.1002/anie.201502155.
(12) Park, H. J.; Jang, J. K.; Kim, S.; Ha, J.; Moon, D.; Kang, I.; Bae,
Y.; Kim, S.; Hwang, D. Synthesis of a Zr-Based Metal-Organic
Framework with Spirobifluorenetetrabenzoic Acid for the Effective
Removal of Nerve Agent Simulants. Inorganic chemistry 2017, 56,
12098-12101, DOI: 10.1021/acs.inorgchem.7b02022.
(13) Katz, M. J.; Moon, S.; Mondloch, J. E.; Beyzavi, M. H.;
Stephenson, C. J.; Hupp, J. T.; Farha, O. K. Exploiting parameter
space in MOFs: a 20-fold enhancement of phosphate-ester hydrolysis
with UiO-66-NH2. Chem. Sci 2015, 6, 2286-2291, DOI:
10.1039/C4SC03613A.
a Six-Connected
Synthetic protocols, full characterization of materials and
details of catalytic studies. The Supporting Information is
available free of charge on the ACS Publications website.
AUTHOR INFORMATION
Correspondings Authors
Notes
The authors have filled the patent: Korean patent application
number 10-2017-0107281 (2017, 24th Aug.).
5
ACS Paragon Plus Environment