X.-Y. Han et al. / Bioorg. Med. Chem. Lett. 15 (2005) 1979–1982
Table 1. Synthetic results of the four isomers17 of 8018
1981
Entry
2
3
1
%Eea
100
Yieldb (%)
HO
OH
1
75
N
O
N
O
S-1a
OH
HO
HO
HO
O
2
3
4
100
99
72
76
70
N
N
R-1a
OH
O
N
O
N
S-1b
OH
O
99
N
N
R-1b
a The ee is determined by HPLC (Chiradex Cartridge, mobile phase 30% acetonitrile/70% 0.05 M KH2PO4/0.3% Et3N at pH 6.0, and the tS-1a
42.8 min, tR-1b = 47.9 min).
b Yield of the reaction between epoxide 2 and 3.
=
tartaric acid salt. After recrystallized in 80% EtOH for
three times, the S-quinuclidinol tartaric acid salt was ob-
tained in 60% yield. The salt reacted with 2N NaOH at
70 °C for 1 h, then the solution was saturated with anhy-
drous K2CO3 and extracted with benzene at 70 °C to
give S-quinuclidinol 3 in 63% yield. Similarly, the com-
pound R-3 could be obtained with D-(+)-tartaric acid as
resolution agent.
References and notes
1. (a) Caner, H.; Groner, E.; Lery, L.; Agranat, I. Drug
Discovery Today 2004, 9, 105; (b) Rouhi, A. M. Chem.
Eng. News 2003, 81, 45; (c) Agranat, I.; Caner, H.;
Caldwell, J. Nat. Rev. Drug Discovery 2002, 1, 753; (d)
Eichelbaum, M.; Gross, A. S. Adv. Drug Res. 1996, 28, 1.
2. Richards, A.; McCague, R. Chem. Ind. 1997, 422.
3. (a) Gupa, P.; Fernandes, R. A.; Kumar, P. Tetrahedron
Lett. 2003, 44, 4231; (b) Yarker, Y. E.; Goa, K. L.; Fitton,
A. Drug Aging 1995, 6, 243.
4. (a) Mitsuga, M.; Kobayashi, K.; Kawakami, K.; Satoh,
A.; Ogino, Y.; Kawakawa, T.; Ohtake, N.; Kimura, T.;
Hirose, H.; Sato, A.; Numazawa, T.; Hasegawa, T.;
Noguchi, K.; Mase, T. J. Med. Chem. 2000, 43, 5017; (b)
Mitsuya, M.; Mase, T.; Tsuchiya, Y.; Kawakami, K.;
Hattori, H.; Kobayashi, K.; Ogino, Y.; Fujikawa, T.;
Satoh, A.; Kimura, T.; Noguchi, K.; Ohtake, N.; Tomim-
oto, K. Bioorg. Med. Chem. 1999, 2, 2555.
The final step involved the ring opening of chiral epox-
ide 2 with alcohol 3, which could readily be performed
by simple nucleophile substitution with NaH10 in
DMSO, and the results are shown in Table 1. The data
in Table 1 show that the enantiopure isomers of 8018
were obtained in moderate yields with high ee values
by using our synthetic method.
In summary, we developed a facile and efficient proce-
dure to prepare the isomers of 8018 by employing the
asymmetric epoxidation of mono-sulfonate 4 for the
first time as the key step. The synthetic strategy can be
further extended to the asymmetric synthesis of other re-
lated C–S and C–N bonds analogs. Currently studies are
in progress in these directions.
5. (a) Angeli, P. IL Farmaco 1998, 53, 1–21; (b) Mckittrick,
B. A.; Guo, G. H.; Zhu, Z. N.; Ye, Y. Z. WO Patent 02/
051808; (c) Wang, Y. G.; Chang, W. K.; Dugar, S.;
Chackalamannil, S. WO Patent 98/051808; (d) Bakale, R.
P.; Lopez, J. L.; McConville, F. X.; Vandenbossche, C. P.;
Senanayake, C. H. U.S. Patent 6,14,529; (e) Banholzer, R.;
Bauer, R.; Reichl, R. U.S. Patent 5,610,163; (f) Beecham,
S. Curr. Opin. Chem. Biol. 2000, 4, 412–419.
6. (a) Liu, H.; Liu, C. H.; Han, X. Y.; Zhong, B. H.; Liu, K.
L. J. Chem. Res. 2004, 482; (b) Liu, H.; Han, X. Y.; Liu,
C. H.; Zhong, B. H.; Liu, K. L. Anal. Sci. 2004, 20, 121–
122; (c) Wu, P. J.; Yun, L. H. Chin. J. Med. Chem. 1999, 9,
102; (d) Wang, L.; Yun, L. H.; Zhang, Q. K. Acta Pharm.
Sin. (Chin.) 1996, 31, 790; (e) Wang, X. M.; Yun, L. H.;
Wen, G. L.; Zhang, Q. K. Acta Pharm. Sin. (Chin.) 1984,
19, 748.
Acknowledgements
Project supported by the National Natural Science
Foundation of China (No. 32813251).
Supplementary data
7. (a) Niu, W. Z.; Zhao, D. L.; Liu, C. G. Arch. Int.
Pharmacod. Ther. 1990, 304, 64–74; (b) Xue, M.; Ruan, J.
X.; Yuan, S. L.; Zhang, Z. Q.; Qiao, J. Z.; Wu, B.; Li, Y.
H. Chin. Pharmacol. Bull. 2002, 18, 447–451.
Supplementary data associated with this article can be