Please do not adjust margins
Organic & Biomolecular Chemistry
Page 4 of 5
COMMUNICATION
Journal Name
J. Kim and Y. Kishi, J. Am. Chem. Soc., 2008, 130, 1842; (d) T.
Spangenberg, S. Aubry and Y. Kishi, Tetrahedron Lett., 2010, 51,
1782; (e) S. M. Hande, Y. Kazumi, W. G. Lai, K. L. Jackson, S. Maeda
and Y. Kishi, Org. Lett., 2012, 14, 4618; (f) Y. Xing, S. M. Hande and Y.
Kishi, J. Am. Chem. Soc., 2012, 134, 19234.
production of IL-2 by Jurkat cells was measured and compared
to results obtained with the toxin isolated from the culture of
M. ulcerans (Figure 1). In this T cell model, the natural
mycolactone dose-dependently suppressed the production of
IL-2 upon stimulation using phorbol 12-myristate 13-acetate
DOI: 10.1039/C7OB01943B
6
7
(a) A. B. Benowitz, S. Fidanze, P. L. C. Small and Y. Kishi, J. Am. Chem.
Soc., 2001, 123, 5128; (b) S. Fidanze, F. Song, M. Szlosek-Pinaud, P. L.
C. Small and Y. Kishi J. Am. Chem. Soc., 2001, 123, 10117.
(a) M. K. Gurjar and J. Cherian, Heterocycles, 2001, 55, 1095; (b) F.
Song, S. Fidanze, A. B. Benowitz and Y. Kishi, Org. Lett., 2002, 4, 647;
(c) R. Summeren, B. L. Feringa and A. Minnaard, Org. Biomol. Chem.,
2005, 3, 2524. (d) M. D. Alexander, S. D. Fontaine, J. J. La Clair, A. G.
Dipasquale, A. L. Rheingold and M. D. Burkart, Chem. Commun.,
2006, 4602; (e) F. Song, S. Fidanze, A. B. Benowitz and Y. Kishi,
Tetrahedron, 2007, 63, 5739; (f) K. Ko, M. D. Alexander, S. D.
Fontaine, J. E. Biggs-Houck, J. J. La Clair and M. D. Burkart, Org.
Biomol. Chem., 2010, 8, 5159; (g) K. L. Jackson, W. J. Li, C. L. Chen
and Y. Kishi, Tetrahedron, 2010, 66, 2263; (h) G. W. Wang, N. Yin and
E.-i. Negishi, Chem. Eur. J., 2011, 17, 4118. (i) P. Gersbach, A.
Jantsch, F. Feyen, N. Scherr, J.-P. Dangy, G. Pluschke and K.-H.
Altmann, Chem. Eur. J., 2011, 17, 13017; (j) C. A. Brown and V. K.
Aggarwal, Chem. Eur. J., 2015, 21, 13900.
(a) A.-C. Chany, V. Casarotto, M. Schmitt, C. Tarnus, L. Guenin-Macé,
C. Demangel, O. Mirguet, J. Eustache and N. Blanchard, Chem. Eur.
J., 2011, 17, 14413; (b) A.-C Chany, R. Veyron-Churlet, C. Tresse, V.
Mayau, V. Casarotto, F. Le Chevalier, L. Guenin-Macé, C. Demangel
and N. Blanchard, J. Med. Chem., 2014, 57, 7382. (c) L. Guenin-Macé,
L. Baron, A.-C. Chany, C. Tresse, S. Saint-Auret, F. Jönsson, F. Le
Chevalier, P. Bruhns, G. Bismuth, S. Hidalgo-Lucas, J.-F. Bisson, N.
Blanchard and C. Demangel, Sci. Trans. Med., 2015, 7, 289ra85.
(a) M. T. Silva, F. Portaels and J. Pedrosa, Lancet Infect. Dis., 2009, 9,
699, (b) D. S. Walsh, F. Portaels and W. M. Meyers, Dermatol. Clin.,
2011, 29, 1.
(PMA) and calcimycin with
a half maximal inhibitory
concentration (IC50) of 17 nM. The synthetic mycolactone had a
comparable dose-dependent suppressive effect with an IC50 of
6,7 nM.12
In conclusion, we have reported
a total synthesis of
mycolactone A/B as a 12S/12R mixture of diastereomers that
ultimately proved inconsequential on the biological activity.
Indeed, the ability of this synthetic mycolactone A/B to inhibit
T-cell interleukin-2 production is indistinguishable from the one
observed with the toxin isolated from the culture of M.
ulcerans. In addition, the flexible synthetic blueprint also
allowed the synthesis of [22,22,22-2H3]-mycolactone A/B as a
potential internal standard for isotope dilution mass
spectrometry. Considering the translational potential of
mycolactone A/B, this work opens new perspectives for the
late-stage modification advanced mycolactones intermediates,
especially in the macrolactonic core. Advances toward specific
probes based on mycolactone A/B chemical structure and able
to decipher the biology of this complex disease are underway
and will be reported in due course.
8
9
The authors thank the Université de Strasbourg, Investissement
d’Avenir (Idex Unistra), CNRS, Fondation « Raoul Follereau »,
Fondation « Pour Le Développement De La Chimie Des
Substances Naturelles Et Ses Applications » and Roche for a
generous gift of methyl 3-hydroxy-2-methylpropionate.
10 (a) B. Echeverria, J. Etxebarria, N. Ruiz, Á. Hernandez, J. Calvo, M.
Haberger, D. Reusch and N.-C. Reichardt, Anal. Chem., 2015, 87,
11460; (b) J. Villanueva, M. Carrascal and J. Abian, J. Proteomics,
2014, 96, 184.
11 K. Kaneda, T. Uchiyama, Y. Fujiwara, T. Imanaka and S. Teranishi, J.
Org. Chem., 1979, 44, 55.
12 See Supporting Information for details.
References
13 (a) I. Shiina, M. Kubota, H. Oshiumi and M. Hashizume, J. Org. Chem.,
2004, 69, 1822; (b) I. Shiina, H. Fukui and A. Sasaki, Nat. Protocols,
2007, 2, 2312; (c) A. B. Smith, S. Dong, J. B. Brenneman and R. J. Fox,
J. Am. Chem. Soc., 2009, 131, 12109.
14 (a) S. R. Chemler, D. Trauner and S. J. Danishefsky, Angew. Chem. Int.
Ed., 2001, 40, 4544; (b) S. Kotha, K. Lahiri and D. Kashinath,
Tetrahedron, 2002, 58, 9633; (c) R. Jana, T. P. Pathak and M. S.
Sigman, Chem. Rev., 2011, 111, 1417; (d) G. Seidel and A. Furstner,
Chem. Commun., 2012, 48, 2055; (e) A. J. J. Lennox and G. C. Lloyd-
Jones, Chem. Soc. Rev., 2014, 43, 412.
15 W. C. Still and J. C. Barrish, J. Am. Chem. Soc., 1983, 105, 2487.
16 H. C. Brown and U. S. Racherla, Tetrahedron Lett., 1985, 26, 2187.
17 Selected examples: (a) M. T. Crimmins, J. D. Katz, D. G. Washburn, S.
P. Allwein and L. F. McAtee, J. Am. Chem. Soc., 2002, 124, 5661; (b)
F. Yokokawa, T. Asano, T. Okino, W. H. Gerwick and T. Shioiri,
Tetrahedron, 2004, 60, 6859.
18 A. Fürstner, J.-A. Funel, M. Tremblay, L. C. Bouchez, C. Nevado, M.
Waser, J. Ackerstaff and C. C. Stimson, Chem. Commun., 2008, 2873.
19 (a) G. Evano, N. Blanchard and M. Toumi, Chem. Rev., 2008, 108,
3054. (b) M. Donnard and N. Blanchard, in Copper-Mediated Cross-
Coupling Reactions (Eds.: G. Evano and N. Blanchard), John Wiley &
Sons, Inc., Hoboken, 2013, pp. 683.
1
(a) H. Hong, C. Demangel, S. Pidot, P. F. Leadlay and T. Stinear Nat.
Prod. Rep., 2008, 25, 447; (b) Y. Kishi, Proc. Natl. Acad. Sci. U.S.A.,
2011, 108, 6703; (c) A.-C. Chany, C. Tresse, V. Casarotto and N.
Blanchard, Nat. Prod. Rep., 2013, 30, 1527; (d) see WHO website
accessed on July, 10th, 2017
Gehringer and K.-H. Altmann, Beilstein J. Org. Chem., 2017, 13, 1596.
P. MacCallum, J. C. Tolhurst, G. Buckle and H. A. Sissons, J. Pathol.
Bacteriol., 1948, 60, 93.
2
3
For the most recent research, see: (a) M. Mc Kenna, R. E. Simmonds
and S. High, J. Cell. Sci., 2016, 129, 1404; (b) F. S. Sarfo, R. Phillips, M.
Wansbrough-Jones and R. E. Simmonds, Cell Microbiol., 2016, 18,
17 ; (c) L. Baron, A. O. Paatero, J.-D. Morel, F. Impens, L. Guenin-
Macé, S. Saint-Auret, N. Blanchard, R. Dillmann, F. Niang, S.
Pellegrini, J. Taunton, V. O. Paavilainen and C. Demangel, J. Exp.
Med., 2016, 213, 2885; (d) R. Bieri, N. Scherr, M.-T. Ruf, J.-P. Dangy,
P. Gersbach, M. Gehringer, K.-H. Altmann and G. Pluschke, ACS
Chem. Biol., 2017, 12, 1297; (e) M. McKenna, R. E. Simmonds and S.
High, J. Cell. Sci., 2017, 130, 1307; (f) V. S. Babu, Y. Zhou and Y. Kishi,
Bioorg. Med. Chem. Lett., 2017, 27, 1274; (g) J. E. Grotzke, P. Kozik,
J.-D. Morel, F. Impens, N. Pietrosemoli, P. Cresswell, S. Amigorena
and C. Demangel, Proc. Natl. Acad. Sci. U.S.A., 2017, 114, E5910.
K. M. George, D. Chatterjee, G. Gunawardana, D. Welty, J. Hayman,
R. Lee and P. L. C. Small, Science, 1999, 283, 854.
20 J. Srogl, G. D. Allred and L. S. Liebeskind, J. Am. Chem. Soc., 1997,
119, 12376.
21 R. W. Hoffmann, Chem. Rev., 1989, 89, 1841.
4
5
(a) T. C. Judd, A. Bischoff, Y. Kishi, S. Adusumilli and P. L. C. Small,
Org. Lett., 2004, 6, 4901; (b) S. Aubry, R. E. Lee, E. A. Mahrous, P. L.
4 | J. Name., 2012, 00, 1-3
This journal is © The Royal Society of Chemistry 20xx
Please do not adjust margins