10.1002/adsc.201700978
Advanced Synthesis & Catalysis
[2] a) D. He, L. Ding, H. Xu, X. Lei, H. Xiao, Y. Zhou, J.
Org. Chem. 2012, 77, 8435; b) S.-J. Xiao, X.-X. Lei, B.
Xia, H.-P. Xiao, D.-H. He, D.-M. Fang, H.-Y. Qi, F.
Chen, L.-S. Ding, Y. Zhou, Tetrahedron Lett. 2014, 55,
2869.
species formed from Pd(OAc)2 and ligand, which
leads to π-allyl-palladium intermediate I, tert-butoxy
anion, as well as carbon dioxide. Next, the hydrogen
atom of the hydroxyl group is deprotonated by the
liberated tert-butoxy anion, forming an oxygen anion
intermediate II. Then, 1,6-conjugated addition of the
oxygen anion to p-QM 1a provides intermediate III,
[3] a) Q. Yin, S.-L. You, Org. Lett. 2012, 14, 3526; b) D.
Ma, C. Zhao, H. Li, J. Qi, L. Zhang, S. Xu, X. Xie, X.
She, Chem. Asian J. 2013, 8, 364; c) H. Li, Y. Zhang, X.
Xie, H. Ma, C. Zhao, G. Zhao, X. She, Org. Lett. 2014,
16, 4440.
followed
by
palladium-catalyzed
allylation
dearomatization ring closure to provide the product
3a and regenerates the active palladium catalyst for
the next catalytic cycle.
[4] For selected reviews on p-QMs, see: a) A. Parra, M.
Tortosa, ChemCatChem 2015, 7, 1524; b) P. Chauhan,
U. Kaya, D. Enders, Adv. Synth. Catal. 2017, 359, 888;
For selected examples, see: c) W.-D. Chu, L.-F. Zhang,
X. Bao, X.-H. Zhao, C. Zeng, J.-Y. Du, G.-B. Zhang,
F.-X. Wang, X.-Y. Ma, C.-A. Fan, Angew. Chem. Int.
Ed. 2013, 52, 9229; d) L. Caruana, F. Kniep, T. K.
Johansen, P. H. Poulsen, K. A. Jørgensen, J. Am. Chem.
Soc. 2014, 136, 15929; e) Y. Lou, P. Cao, T. Jia, Y.
Zhang, M. Wang, J. Liao, Angew. Chem. Int. Ed. 2015,
54, 12134; f) Z. Wang, Y. F. Wong, J. Sun, Angew.
Chem. Int. Ed. 2015, 54, 13711; g) N. Dong, Z.-P.
Zhang, X.-S. Xue, X. Li, J.-P. Cheng, Angew. Chem. Int.
Ed. 2016, 55, 1460; h) K. Zhao, Y. Zhi, T. Shu, A.
Valkonen, K. Rissanen, D. Enders, Angew. Chem. Int.
Ed. 2016, 55, 12104; i) K. Zhao, Y. Zhi, A. Wang, D.
Enders, ACS Catal. 2016, 6, 657; j) F.-S. He, J.-H. Jin,
Z.-T. Yang, X. Yu, J. S. Fossey, W.-P. Deng, ACS
Catal. 2016, 6, 652; k) Y.-H. Deng, X.-Z. Zhang, K.-Y.
Yu, X. Yan, J.-Y. Du, H. Huang, C.-A. Fan, Chem.
Commun. 2016, 52, 4183; l) Y. Shen, J. Qi, Z. Mao, S.
Cui, Org. Lett. 2016, 18, 2722; m) X.-Z. Zhang, Y.-H.
Deng, X. Yan, K.-Y. Yu, F.-X. Wang, X.-Y. Ma, C.-A.
Fan, J. Org. Chem. 2016, 81, 5655; n) S. Li, Y. Liu, B.
Huang, T. Zhou, H. Tao, Y. Xiao, L. Liu, J. Zhang,
ACS Catal. 2017, 7, 2805; o) R. Zhuge, L. Wu, M.
Quan, N. Butt, G. Yang, W. Zhang, Adv. Synth. Catal.
2017, 359, 1028; and references cited therein.
In conclusion, we have developed an
unprecedented
palladium-catalyzed
oxa-[4+2]
annulation of p-QMs with allyl carbonates bearing a
nucleophilic alcohol side chain. This method offered
various 2-oxaspiro[5.5]undeca-7,10-dien-9-ones in
moderate to good yields with good functional group
tolerance under mild conditions. Initial exploration on
the synthesis of chiral products offered moderate
enantioselectivity.
Further
investigations
on
synthesizing 2-oxaspiro-cyclohexadienones with
higher enantioselectivity are currently underway in
our laboratory.
Experimental Section
General procedure for the synthesis of 2-
oxaspiro[5.5]undeca-7,10-dien-9-ones: A sealed tube was
charged with para-quinone methides 1 (0.10 mmol, 1.0
equiv), allyl carbonate 2f (0.20 mmol, 2.0 equiv),
palladium catalyst (0.01 mmol, 10 mol%), and ligand (0.02
mmol, 20 mol%). The vial is thoroughly flushed with argon
and solvent (1.0 mL) was added under argon. Then the
o
reaction mixture was stirred at 40 C for 48 h. After the
reaction vessel was cooled to room temperature, the
solution was concentrated in vacuo and purified by careful
chromatography on silica gel (EtOAc/petroleum ether =
1/200) to afford the desired products 3.
[5] K. Gai, X. Fang, X. Li, J. Xu, X. Wu, A. Lin, H. Yao,
Acknowledgements
Chem. Commun. 2015, 51, 15831.
Generous financial support from the National Natural Science
Foundation of China (NSFC21502232 and NSFC 21572272), the
Natural Science Foundation of Jiangsu Province (BK20140655),
and the Foundation of State Key Laboratory of Natural Medicines
(ZZYQ201605) is gratefully acknowledged.
[6] a) Z. Yuan, X. Fang, X. Li, J. Wu, H. Yao, A. Lin, J.
Org. Chem. 2015, 80, 11123; b) X.-Z. Zhang, J.-Y. Du,
Y.-H. Deng, W.-D. Chu, X. Yan, K.-Y. Yu, C.-A. Fan,
J. Org. Chem. 2016, 81, 2598.
[7] L. Roiser, M. Waser, Org. Lett. 2017, 19, 2338.
References
[8] a) Z. Yuan, W. Wei, A. Lin, H. Yao, Org. Lett. 2016,
18, 3370; b) C. Ma, Y. Huang, Y. Zhao, ACS Catal.
2016, 6, 6408.
[1]For selected examples, see: a) L. H. Hurley, C.-S. Lee, J.
P. McGovren, M. A. Warpehoski, M. A. Mitchell, R. C.
Kelly, P. A. Aristoff, Biochemistry 1988, 27, 3886; b) J.
P. Parrish, D. B. Kastrinsky, S. E. Wolkenberg, Y.
Igarishi, D. L. Boger, J. Am. Chem. Soc. 2003, 125,
10971; c) K. S. MacMillan, D. L. Boger, J. Med. Chem.
2009, 52, 5771; d) H. Sorek, A. Rudi, I. Goldberg, M.
Aknin, Y. Kashman, J. Nat. Prod. 2009, 72, 784; e) H.
B. Park, Y.-J. Kim, J. K. Lee, K. R. Lee, H. C. Kwon,
Org. Lett. 2012, 14, 5002; f) P. B. Koswatta, J. Das, M.
Yousufuddin and C. J. Lovely, Eur. J. Org. Chem. 2015,
2603.
[9] Z. Yuan, L. Liu, R. Pan, H. Yao, A. Lin, J. Org. Chem.
2017, 82, 8743.
[10] Z. Yuan, K. Gai, Y. Wu, J. Wu, A. Lin, H. Yao, Chem.
Commun. 2017, 53, 3485.
[11] X.-Z. Zhang, Y.-H. Deng, K.-J. Gan, X. Yan, K.-Y.
Yu, F.-X. Wang, C.-A. Fan, Org. Lett. 2017, 19, 1752.
[12] a) X. Li, X. Xu, W. Wei, A. Lin, H. Yao, Org. Lett.
2016, 18, 428; b) S. Gao, X. Xu, Z. Yuan, H. Zhou, H.
Yao, A. Lin, Eur. J. Org. Chem. 2016, 3006; c) C.
4
This article is protected by copyright. All rights reserved.