Journal of the American Chemical Society
Page 4 of 5
We also reasoned that the aminyl radical could be harnessed
Corresponding Authors
1
2
3
4
5
6
7
8
for hydrogen atom abstraction reactions. This objective was
achieved using more challenging substrates containing C(sp2)‒X
bonds. Irradiation of a 20 mol% solution of 1 with 4ꢀFꢀC6H4X (X
= I, Br) and NaN(SiMe3)2 in benzene at room temperature for 6 d
afforded 1ꢀ(4ꢀfluorophenyl)benzene in 68% and 43% isolated
yields for X = I and Br, respectively (Scheme 4), while no reacꢀ
tion was observed for X = Cl (Figure S27). The identity of the
biphenyl product was also confirmed by 19F NMR spectroscopy as
well as high resolution mass spectroscopy (HRMS). The origin of
the phenyl group was confirmed with the use of deuterobenzene
as the reaction solvent; the molecular mass corresponding to 1ꢀ(4ꢀ
fluorophenyl)ꢀ2,3,4,5,6ꢀdeuterobenzene was detected by HRMS
(see Figure S29). Direct C(sp2)‒H and C(sp2)‒X coupling in the
presence of catalytic 1,10ꢀphenanthroline derivatives at elevated
temperatures was reported recently by Shi and Hayashi,17 and
were proposed to proceed through a single electron transfer (SET)
mechanism. In our case, NMRꢀscale reactions of 1 with excess 4ꢀ
*jmanna@sas.upenn.edu, *schelter@sas.upenn.edu
ACKNOWLEDGMENT
We gratefully acknowledge the University of Pennsylvania and
the National Science Foundation (CHEꢀ1362854) for financial
support. This work used the Extreme Science and Engineering
Discovery Environment (XSEDE), which is supported by U.S.
NSF grant number OCIꢀ1053575. We thank the E. J. Petersson
and S. J. Park groups at UPenn for use of their fluorometers.
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
REFERENCES
(1) Kalyanasundaram, K. Coord. Chem. Rev. 1982, 46, 159.
(2) Dixon, I. M.; Collin, J.ꢀP.; Sauvage, J.ꢀP.; Flamigni, L.; Encinas, S.;
Barigelletti, F. Chem. Soc. Rev. 2000, 29, 385.
(3) a) Sattler, W.; Ener, M. E.; Blakemore, J. D.; Rachford, A. A.;
LaBeaume, P. J.; Thackeray, J. W.; Cameron, J. F.; Winkler, J. R.; Gray,
H. B. J. Am. Chem. Soc. 2013, 135, 10614; b) Sattler, W.; Henling, L. M.;
Winkler, J. R.; Gray, H. B. J. Am. Chem. Soc. 2015, 137, 1198.
(4) a) Kern, J.ꢀM.; Sauvage, J.ꢀP. J. Chem. Soc., Chem. Commun. 1987,
546; b) Harkins, S. B.; Peters, J. C. J. Am. Chem. Soc. 2005, 127, 2030.
(5) Ghosh, I.; Ghosh, T.; Bardagi, J. I.; König, B. Science 2014, 346, 725.
(6) a) Zeitler, K. Angew. Chem., Int. Ed. 2009, 48, 9785; b) Yoon, T. P.;
Ischay, M. A.; Du, J. Nat. Chem. 2010, 2, 527; c) Narayanam, J. M. R.;
Stephenson, C. R. J. Chem. Soc. Rev. 2011, 40, 102; d) Prier, C. K.;
Rankic, D. A.; MacMillan, D. W. C. Chem. Rev. 2013, 113, 5322; e) Xi,
Y.; Yi, H.; Lei, A. Org. Biomol. Chem. 2013, 11, 2387; f) Tellis, J. C.;
Primer, D. N.; Molander, G. A. Science 2014, 345, 433.
FꢀC6H4Br
in
C6D6
revealed
the
formation
of
CeIVBr[N(SiMe3)2]3.18 Therefore, the catalytic generation of the
biphenyl products was rationalized through an SRN1ꢀtype mechaꢀ
nism comprising: 1) photoꢀinduced halogen abstraction from 4ꢀFꢀ
C6H4Br by 1 leading to CeIVBr[N(SiMe3)2]3 and 4ꢀFꢀC6H4•; 2)
addition of 4ꢀFꢀC6H4• to benzene forming the radical adduct; 3)
saltꢀmetathesis and reduction of CeIVBr[N(SiMe3)2]3 with
NaN(SiMe3)2 to regenerate 1 and form •N(SiMe3)2; 4) hydrogen
atom abstraction of the radical adduct by •N(SiMe3)2 to give the
biphenyl product (See Scheme S2 for proposed catalytic cycle).
These reactions were catalytic in 1 and demonstrated for the first
time that an fꢀblock complex could serve as an effective molecuꢀ
lar photoredox catalyst.
(7) Nguyen, J. D.; D'Amato, E. M.; Narayanam, J. M. R.; Stephenson, C.
R. J. Nat. Chem. 2012, 4, 854.
(8) Piro, N. A.; Robinson, J. R.; Walsh, P. J.; Schelter, E. J. Coord. Chem.
Rev. 2014, 260, 21.
(9) a) Aspinall, H. C. Chemistry of the f-Block Elements; CRC Press,
2001, p 34; b) Cotton, S. Lanthanide and Actinide Chemistry; john Wiley
and Sons: West Sussex, U. K., 2006, p 61ꢀ77.
(10) a) Rausch, M. D.; Moriarty, K. J.; Atwood, J. L.; Weeks, J. A.;
Hunter, W. E.; Brittain, H. G. Organometallics 1986, 5, 1281; b) Hazin, P.
N.; Bruno, J. W.; Brittain, H. G. Organometallics 1987, 6, 913; c) Hazin,
P. N.; Lakshminarayan, C.; Brinen, L. S.; Knee, J. L.; Bruno, J. W.; Streib,
W. E.; Folting, K. Inorg. Chem. 1988, 27, 1393; d) Zheng, X.ꢀL.; Liu, Y.;
Pan, M.; Lü, X.ꢀQ.; Zhang, J.ꢀY.; Zhao, C.ꢀY.; Tong, Y.ꢀX.; Su, C.ꢀY.
Angew. Chem., Int. Ed. 2007, 46, 7399.
(11) a) Tretiak, S.; Saxena, A.; Martin, R. L.; Bishop, A. R. Chem. Phys.
Lett. 2000, 331, 561; b) Martin, R. L. J. Chem. Phys. 2003, 118, 4775.
(12) a) Fieser, M. E.; MacDonald, M. R.; Krull, B. T.; Bates, J. E.; Ziller,
J. W.; Furche, F.; Evans, W. J. J. Am. Chem. Soc. 2015, 137, 369; b)
MacDonald, M. R.; Bates, J. E.; Ziller, J. W.; Furche, F.; Evans, W. J. J.
Am. Chem. Soc. 2013, 135, 9857; c) Langeslay, R. R.; Fieser, M. E.;
Ziller, J. W.; Furche, F.; Evans, W. J. Chem. Sci. 2015, 6, 517; d)
MacDonald, M. R.; Fieser, M. E.; Bates, J. E.; Ziller, J. W.; Furche, F.;
Evans, W. J. J. Am. Chem. Soc. 2013, 135, 13310.
(13) a) Rehm, D.; Weller, A. Isr. J. Chem. 1970, 8, 259; b) Tucker, J. W.;
Stephenson, C. R. J. J. Org. Chem. 2012, 77, 1617.
(14) Williams, U. J.; Robinson, J. R.; Lewis, A. J.; Carroll, P. J.; Walsh, P.
J.; Schelter, E. J. Inorg. Chem. 2014, 53, 27.
(15) Grimshaw, J. Electrochemical reactions and mechanisms in organic
chemistry; Elsevier Science B. V., 2000, p 99.
(16) a) Dröse, P.; Hrib, C. G.; Edelmann, F. T. J. Organomet. Chem. 2010,
695, 1953; b) Dröse, P.; Crozier, A. R.; Lashkari, S.; Gottfriedsen, J.;
Blaurock, S.; Hrib, C. G.; MaichleꢀMössmer, C.; Schädle, C.; Anwander,
R.; Edelmann, F. T. J. Am. Chem. Soc. 2010, 132, 14046; c) Werner, D.;
Deacon, G. B.; Junk, P. C.; Anwander, R. Chem. – Eur. J. 2014, 20, 4426.
(17) a) Shirakawa, E.; Itoh, K.ꢀi.; Higashino, T.; Hayashi, T. J. Am. Chem.
Soc. 2010, 132, 15537; b) Sun, C.ꢀL.; Li, H.; Yu, D.ꢀG.; Yu, M.; Zhou, X.;
Lu, X.ꢀY.; Huang, K.; Zheng, S.ꢀF.; Li, B.ꢀJ.; Shi, Z.ꢀJ. Nat. Chem. 2010,
2, 1044; c) Li, H.; Sun, C.ꢀL.; Yu, M.; Yu, D.ꢀG.; Li, B.ꢀJ.; Shi, Z.ꢀJ.
Chem. –Eur. J. 2011, 17, 3593; d) Sun, C.ꢀL.; Gu, Y.ꢀF.; Huang, W.ꢀP.;
Shi, Z.ꢀJ. Chem. Commun. 2011, 47, 9813.
Scheme 4. Catalytic arylations of benzene with ArX (X = I, Br)
Through combined spectroscopic and computational studies,
we demonstrated luminescent Ce(III) complexes 1, 1ꢀiPr and 1ꢀ
Cy possess singly occupied 5dz2 orbitals in their long lived excitꢀ
ed states. The metalloradical nature of the excited states allowed
electrophilic cerium(III) complexes to act as photosensitizers that
activated challenging substrates through inner sphere processes,
taking advantage of the enthalpy gain in the formation of
Ce(IV)‒X bonds. A drawback in the current system is the relativeꢀ
ly low absorptivity of Ce(III) complexes, which limits the catalytꢀ
ic turnover rates. Development of new sensitized cerium(III) phoꢀ
toꢀredox catalysts, expanded reactivity studies and physicochemiꢀ
cal studies on cerium(III) luminescence characteristics are curꢀ
rently underway in our laboratory.
ASSOCIATED CONTENT
Supporting Information
Crystallographic data (CIF), electrochemical data, electronic abꢀ
sorption data, excitation and emission data, computational details
and optimization data for catalysis. This material is available free
(18) Williams, U. J.; Carroll, P. J.; Schelter, E. J. Inorg. Chem. 2014, 53,
6338.
AUTHOR INFORMATION
ACS Paragon Plus Environment