Table 1. Metalation of Trialkyltolylsilanes with Butyllithium
in the Presence of Potassium tert-Butoxidea or, as Indicated by
Values in Brackets, with Butyllithium in the Presence of
N,N,N′,N′′,N′′-Pentamethyldiethylenetriamine (PMDTA):b Rates
Relative to Toluene (krel ) 1.0)
isomer
R ) CH3
R ) C2H5
R ) CH(CH3)
ortho
meta
para
0.70 [0.50]
0.60 [1.3 ]
3.5 [4.3 ]
0.26 [0.33]
0.34 [1.0 ]
2.5 [4.1 ]
0.14 [-]
Figure 1. Metalation of toluenes with butyllithium/potassium tert-
butoxide: π-arene/potassium interaction at the transition state.
a In tetrahydrofuran (THF) at -75 °C. b In THF at 0 °C.
The results compiled in Table 1 are remarkable in several
aspects. They reveal a rate enhancement brought about by
para-positioned trialkylsilyl groups but also a strong rate
retardation if such substituents are located at the meta posi-
tion. However, the latter effect is restricted to the potassium-
containing mixed-metal reagent, being absent when the
similarly polar butyllithium/PMDTA (N,N′,N′,N′′,N′′-pen-
tamethyldiethylenetriamine) complex is employed (Table 1).
The reaction-inhibiting action of the meta-trialkylsilyl
groups proved to be cumulative. 1-Methyl-3,5-phenylenebis-
(triethylsilane) was found to undergo the LIC-KOR-promoted
metalation, generating intermediate 2, 0.14 () 0.372) times
as rapidly as toluene (Scheme 2).
the assumption of an η6-type coordination of potassium by
the arene π-electrons at the transition state 3 (Figure 1).
Under such circumstances, the bulky trialkylsilyl substituents
will inevitably become repulsive.
Potassium/π-arene interactions have been postulated for
the first time in an attempt to rationalize why the crowded
endo-4,4,4-triphenyl-2-butenylpotassium can compete with
its unstrained exo isomer at the conformational equilibrium
on equal terms.7 Later, several X-ray structures of organo-
potassiums,8 organosodiums,9 and even alkali metal amides10
have been published that feature η6-metal coordination as a
key factor modeling the crystallographic architecture. In
contrast, evidence for η6-lithium coordination is scarce11 if
one disregards “radical-anions”12 and “arene-dianions”.12c,13
It can only manifest itself if no better donor components are
Scheme 2. Metalation of
1-Methyl-3,5-phenylenebis(triethylsilane) with LIC-KOR
(7) Moret, E.; Fu¨rrer, J.; Schlosser, M. Tetrahedron 1988, 44, 3539-
3550.
(8) (a) Hoffmann, D.; Bauer, W.; Schleyer, P. V. R.; Pieper, U.; Stalke,
D. Organometallics 1993, 12, 1193-1200. (b) Hoffmann, D.; Bauer, W.;
Hampel, F.; van Eikema Hommes, N. J. R.; Schleyer, P. V. R.; Otto, P.;
Pieper, U.; Stalke, D.; Wright, D. S.; Snaith, R. J. Am. Chem. Soc. 1994,
116, 528-536. (c) Luinstra, G. A.; Wang, L.; Stahl, S. S.; Labinger, J. A.;
Bercaw, J. E. Organometallics 1994, 13, 755-756. (d) Scho¨n, J. C. Angew.
Chem. 1995, 107, 1183-1185; Angew. Chem., Int. Ed. Engl. 1995, 34,
1081-1083.
(9) (a) Bock, H.; Ruppert, K.; Fenske, D. Angew. Chem. 1989, 101,
1717-1720; Angew. Chem., Int. Ed. Engl. 1989, 28, 1685-1688. (b) Bock,
H.; Ruppert, K.; Havlas, Z.; Fenske, D. Angew. Chem. 1990, 102, 1095-
1097; Angew. Chem., Int. Ed. Engl. 1990, 29, 1042-1044. (c) Corbelin,
S.; Kopf, J.; Lorenzen, N. P.; Weiss, E. Angew. Chem. 1991, 103, 875-
876; Angew. Chem., Int. Ed. Engl. 1991, 30, 825-826. (d) Bock, H.;
Ruppert, K.; Havlas, Z.; Bensch, W.; Ho¨nle, W.; von Schnering, H. G.
Angew. Chem. 1991, 103, 1197-1200; Angew. Chem., Int. Ed. Engl. 1991,
30, 1183-1186. (e) Jost, W.; Adam, M.; Enkelmann, V.; Mu¨llen, K. Angew.
Chem. 1992, 104, 883-884; Angew. Chem., Int. Ed. Engl. 1992, 31, 878-
879. (f) Bock, H.; Na¨ther, C.; Ruppert, K.; Havlas, Z. J. Am. Chem. Soc.
1992, 114, 6907-6908. (g) Bock, H.; Ruppert, K.; Herdtweck, E.;
Herrmann, W. A. HelV. Chim. Acta 1992, 75, 1816-1824.
(10) Kennedy, A. R.; MacLellan, J. G.; Mulvey, R. E. Angew. Chem.
2001, 113, 3345-3347; Angew. Chem., Int. Ed. 2001, 40, 3245-3247.
(11) (a) Bladauski, D.; Dietrich, H.; Hecht, H. J.; Rewicki, D. Angew.
Chem. 1977, 89, 490-491; Angew. Chem., Int. Ed. Engl. 1977, 16, 474-
475. (b) Bladauski, D.; Rewicki, D. Chem. Ber. 1977, 110, 3920-3929.
(c) Barr, D.; Clegg, W.; Mulvey, R. E.; Snaith, R.; Wright, D. S. J. Chem.
Soc., Chem. Commun. 1987, 716-718. (d) Ruhlandt-Senge, K.; Ellison, J.
J.; Wehmschulte, R. J.; Pauer, F.; Power, P. P. J. Am. Chem. Soc. 1993,
115, 11353-11357. (e) Schiemenz, B.; Power, P. P. Angew. Chem. 1996,
108, 2288-2290; Angew. Chem., Int. Ed. Engl. 1996, 35, 2150-2152. (f)
Dinnebier, R. E.; Behrens, U.; Obrich, F. J. Am. Chem. Soc. 1998, 120,
1430-1433.
The rate decrease caused by meta-trialkylsilyl is too large
to be attributed to an electronic interaction. Actually, the
average σm of -0.056 would require an unreasonably high
reaction constant F of +4.4 to support the hypothesis of a
simple inductive effect [log 0.60 ) 4.4(-0.05)]. Moreover,
this F value would have to grow to +9.4 and +17 when
meta-triethylsilyl and meta-triisopropylsilyl are considered,
respectively. On the other hand, how could one evoke a steric
effect if the silyl substituent occupies the meta position,
which is distant from the exocyclic reaction center? In our
opinion, the only plausible explanation has to be based on
(4) Schlosser, M.; Hartmann, J. Angew. Chem. 1973, 85, 544-545;
Angew. Chem., Int. Ed. Engl. 1973, 12, 508-509.
(5) Schlosser, M.; Marzi, E. Chem. Eur J., in press, published online
March 30, 2005.
(6) (a) Roberts, J. D.; McElhill, E. A.; Armstrong, R. J. Am. Chem. Soc.
1949, 71, 2923-2926. (b) Benkeser, R. A.; Krysiak, H. R. J. Am. Chem.
Soc. 1953, 75, 2421-2425. (c) Bassindale, A. R.; Taylor, P. G. In The
Chemistry of Organosilicon Compounds; Patai S.; Rappoport, Z., Eds.;
Wiley: Chichester, 1989; Part II, pp 893-963, spec. pp 893-903.
(12) (a) DeBoer, E. AdV. Organomet. Chem. 1964, 2, 115-155. (b)
Manceron, L.; Andrews, L. J. Am. Chem. Soc. 1988, 110, 3840-3846.
(13) Benken, R.; Gu¨nther, H. HelV. Chim. Acta 1988, 71, 694-702. (b)
Renken, B.; Andres, W.; Gu¨nther, H. Angew. Chem. 1988, 100, 1212-
1213; Angew. Chem., Int. Ed. Engl. 1988, 27, 1182-1183.
1924
Org. Lett., Vol. 7, No. 10, 2005