RSC Advances
Paper
1
1 M. J. Garc ´ı a-Gal ´a n, et al., Application of fully automated 28 J. Li, et al., Effects of nitrate and humic acid enrooxacin
online solid phase extraction-liquid chromatography
electrospray-tandem mass spectrometry for the
determination of sulfonamides and their acetylated
photolysis in an aqueous system under three light
condition: kinetics and mechanism, Environ. Chem., 2014,
11, 333–340.
metabolites in groundwater, Anal. Bioanal. Chem., 2011, 29 R. R. Chowdhury, P. A. Charpentier and M. B. Ray,
3
99, 795–806.
Photodegradation of 17-estradiol in aquatic solution under
solar irradiation: kinetics and inuencing water
parameters, J. Photochem. Photobiol., A, 2011, 219, 67–75.
1
2 I. Arslan-Alaton, S. Dogruel, E. Baykal and G. Gerone,
Combined chemical and biological oxidation of penicillin
formulation effluent, J. Environ. Manage., 2004, 73, 155–163. 30 T. Zeng and W. A. Arnold, Pesticide photolysis in prairie
1
3 K. K u¨ mmerer, Antibiotics in the aquatic environment
a review part I, Chemosphere, 2009, 75, 417–434.
potholes: probing photo-sensitized processes, Environ. Sci.
Technol., 2013, 47, 6735–6745.
1
4 A. G. Trov ´o , et al., Degradation of sulfamethoxazole in water 31 A. G. Trov ´o , et al., Photodegradation of sulfamethoxazole in
by solar photo-Fenton. Chemical and toxicological
evaluation, Water Res., 2009, 43, 3922–3931.
5 M. J. Garc ´ı a-Gal ´a n, M. Silvia D ´ı az-Cruz and D. Barcel ´o ,
various aqueous media: Persistence, toxicity and
photoproducts assessment, Chemosphere, 2009, 77, 1292–
1298.
1
Identication and determination of metabolites and 32 L. K. Ge, et al., New insights into the aquatic photochemistry
degradation products of sulfonamide antibiotics, Trends
Anal. Chem., 2008, 27, 1008–1022.
6 M. J. Garc ´ı a-Gal ´a n, M. S. D ´ı az-Cruz and D. Barcel ´o ,
of uoroquinolone antibiotics: Direct photodegradation,
hydroxyl-radical oxidation, and antibacterial activity
changes, Sci. Total Environ., 2015, 527–528, 12–17.
1
Combining chemical analysis and ecotoxicity to determine 33 M. Sturini, et al., Sunlight-induced degradation of
environmental exposure and to assess risk from
sulfonamides, Trends Anal. Chem., 2009, 28, 804–819.
7 A. Białk-Bielinska, et al., Ecotoxicity evaluation of selected
sulfonamides, Chemosphere, 2011, 85, 928–933.
8 L. H. M. L. M. Santos, et al., Ecotoxicological aspect As
related to the presence of pharmaceuticals in the aquatic
environment, J. Hazard. Mater., 2010, 175, 45–95.
uoroquinolones in wastewater effluent: Photoproducts
identication and toxicity, Chemosphere, 2015, 134, 313–
318.
1
1
34 S. J. Jiao, et al., Aqueous photolysis of tetracycline and
toxicity of photolytic products to luminescent bacteria,
Chemosphere, 2008, 73, 377–382.
35 Y. Chen, et al., Photolysis of chlortetracycline in aqueous
solution: Kinetics, toxicity and products, J. Environ. Sci.,
2012, 24, 254–260.
19 T. W. Tzeng, et al., Photolysis and photocatalytic
decomposition of sulfamethazine antibiotics in an
2
aqueous solution with TiO , RSC Adv., 2016, 6, 69301–69310. 36 V. K. Balakrishnan, K. A. Terry and J. Toito, Determination of
2
0 U. Riaz, S. M. Ashraf and J. Kashyap, Enhancement of
photocatalytic properties of transitional metal oxides using
conducting polymers: A mini review, Mater. Res. Bull.,
sulfonamide antibiotics in wastewater: a comparison of
solid phase micro extraction and solid phase extraction
methods, J. Chromatogr. A, 2006, 1131, 1–10.
2
015, 71, 75–90.
37 L. Sun, et al., Analysis of sulfonamides in environmental
water samples based on magneticmixed hemimicelles
solid-phase extraction coupled with HPLC-UV detection,
Chemosphere, 2009, 77, 1306–1312.
2
1 U. Riaz, S. M. Ashraf and A. Ruhela, Catalytic degradation of
orange G under microwave irradiation with a novel
nanohybrid catalyst, J. Environ. Chem. Eng., 2015, 3, 20–29.
22 U. Riaz, et al., Sonochemical Facile Synthesis of Self- 38 R. Nassar, et al., Photodegradation of sulfamethazine,
Assembled
Poly(o-phenylenediamine)/Cobalt
Ferrite
sulfamethoxypiridazine, amitriptyline, and clomipramine
drugs in aqueous media, J. Photochem. Photobiol., A, 2017,
336, 176–182.
Nanohybrid with Enhanced Photocatalytic Activity, Ind.
Eng. Chem. Res., 2016, 55, 6300–6309.
23 U. Riaz and S. M. Ashraf, Synergistic effect of microwave 39 M. K. Li, et al., Sulfamethazine degradation in water by the
irradiation and conjugated polymeric catalyst in the facile
degradation of dyes, RSC Adv., 2014, 4, 47153.
4 X. H. Wang and A. Y. C. Lin, Photo transformation of
VUV/UV process: Kinetics, mechanism and antibacterial
activity determination based on a mini uidic VUV/UV
photoreaction system, Water Res., 2017, 108, 348–355.
2
cephalosporin antibiotics in an aqueous environment 40 D. E. Moore, Mechanisms of photosensitization by
results in higher toxicity, Environ. Sci. Technol., 2012, 46,
2417–12426.
phototoxic drugs, Mutat. Res., 1998, 422, 165–173.
41 S. Canonica, U. Jans, K. Stemmler and J. Hoigne,
1
2
5 S. Yan and W. Song, Photo-transformation of
pharmaceutically active compounds in the aqueous
environment: a review, Environ. Sci.: Processes Impacts,
Transformation
kinetics
of
phenols
in
water:
Photosensitization by dissolved natural organic material
and aromatic ketones, Environ. Sci. Technol., 1995, 29,
1822–1831.
2014, 16, 697–720.
2
2
6 L. E. Jacobs, et al., Fulvic acid mediated photolysis of 42 J. Wenk, U. Gunten and S. Canonica, Effect of dissolved
ibuprofen in water, Water Res., 2011, 45, 4449–4458.
7 M. M. Kelly and W. A. Arnold, Direct and indirect photolysis
of the phytoestrogens genistein and daidzein, Environ. Sci.
Technol., 2012, 46, 5396–5403.
organic matter on the transformation of contaminants
induced by excited triplet states and the hydroxyl radical,
Environ. Sci. Technol., 2011, 45, 1334–1340.
1434 | RSC Adv., 2018, 8, 1427–1435
This journal is © The Royal Society of Chemistry 2018