9
78
H. R. Moon et al.
CONCLUSION
On the basis of facts that cyclopropyl nucleosides and nucleosides hav-
ing substituent of multiple bond such as vinyl and acetylenyl groups showed
highly potent anti-herpesvirus inhibition and in particular, guanine nucle-
osides have shown higher anti-herpesvirus potency than nucleosides with
other natural bases, vinyl-substituted cyclopropyl nucleoside derivatives 11
and 12 with adenine and guanine bases were designed and enantiopurely
synthesized starting from (S)-(+)-epichlorohydrin employing key steps such
as a tandem reaction of double alkylations and lactonization via oxirane-ring
opening reaction, a Wittig reaction and chemoselective reduction.
REFERENCES
1
.
.
Schaeffer, H.J.; Beauchamp, L.; De Miranda, P.; Elion, G.B.; Bauer, D.J; Collines, P. 9-(2-
Hydroxyethoxymethyl)guanine activity against viruses of the herpes group, Nature 1978, 272, 583–
585.
2
Spector, S.A.; McKinley, G.F.; Lalezari, J.P.; Samo, T.; Andruczk, R.; Follansbee, S.; Sparti, P.D.; Havlir,
D.V.; Simpson, G.; Buhles, W.; Wong, R.; Stempien, M. Oral ganciclovir for the prevention of cy-
tomegalovirus disease in persons with AIDS. Roche Cooperative Oral Ganciclovir Study Group, N.
Engl. J. Med. 1996, 334, 1491–1497.
3.
4.
5.
Hodge, R.A.V.; Cheng, Y.C. The mode of action of penciclovir. Antiviral Chem. Chemother. 1994, 5,
31–37.
Nishiyama, Y.; Yamamoto, N.; Yamada, Y.; Daikoku, T.; Ichikawa, Y.; Takahashi, K. Anti-herpesvirus
activity of carbocyclic oxetanocin G in vitro. J. Antibiot. 1989, 42, 1854–1859.
Sekiyama, T.; Hatsuya, S.; Tanaka, Y.; Uchiyama, M.; Ono, N.; Iwayama, S.; Oikawa, M.; Suzuki, K.;
Okunishi, M.; Tsuji, T. Synthesis and antiviral activity of novel acyclic nucleosides: Discovery of a
cyclopropyl nucleoside with potent inhibitory activity against herpesviruses. J. Med. Chem. 1998, 41,
1284–1298.
6
.
.
Zhou, S.; Breitenbach, J.M.; Borysko, K.Z.; Drach, J.C.; Kern, E.R.; Gullen, E.; Cheng, Y.-C.;
Zemlicka, J. Synthesis and antiviral activity of (Z)- and (E)-2,2-[bis(hydroxymethyl) cyclopropy-
lidene]methylpurines and –pyrimidines: second-generation methylenecyclopropane analogues of
nucleosides, J. Med. Chem. 2004, 47, 566–575.
Hattori, H.; Tanaka, M.; Fukushima, M.; Sasaki, T.; Matsuda, A. 1-(3-C-Ethynyl-β-D-ribo-
pentofuranosyl)cytosine (ECyd), 1-(3-C-ethynyl-β-D-ribo-pentofuranosyl)uracil (EUrd), and their
nucleobase analogues as new potential multifunctional antitumor nucleosides with a broad spec-
trum, J. Med. Chem. 1996, 39, 5005–5011.
7
8
.
.
Sugimoto, I.; Shuto, S.; Mori, S.; Shigeta, S.; Matsuda, A. Nucleosides and Nucleotides. 183. Syn-
thesis of 4 α-branched thymidines as a new type of antiviral agent. Bioorg. Med. Chem. Lett. 1999, 9,
ꢁ
385–388.
9
Pirrung, M.C.; Dunlap, S.E.; Trinks, U.P. Synthesis and study of racemic, (1R,2S)-, and (1S,2R)-1-
amino-2-(hydroxymethyl)cyclopropanecarboxylic acid. Helv. Chim. Acta 1989, 72, 1301–1310.
10. Onishi, T.; Matsuzawa, T.; Nishi, S.; Tsuji, T. A practical synthesis of antiviral cyclopropane nucleo-
side A-5021. Tetrahedron Lett. 1999, 40, 8845–8847.
1
1. Yoo, B.N.; Kim, H.O.; Moon, H.R.; Seol, S.K.; Jang, S.K.; Lee, K.M.; Jeong, L.S. Synthesis of 2-
C-hydroxymethylribofuranosylpurines as potent anti-hepatitis C virus (HCV) agents. Bioorg. Med.
Chem. Lett. 2006, 16, 4190–4194.