10.1002/chem.201804790
Chemistry - A European Journal
FULL PAPER
[12] W. V. Gilbert, Trends Biochem. Sci. 2011, 36, 127-132.
oxygenases, including those for which assays are currently not
available.[10,40] From a clinical perspective, it is also important to
note that the barbiturate-related ‘triketone’ HPPD inhibitor
nitisinone, which is used in the treatment of type I tyrosinaemia,[27]
is an OGFOD1 inhibitor, something that might be taken into
consideration if nitisinone successors with improved properties
are pursued. In the present work, we have demonstrated that it is
possible to attain selectivity between different 2OG oxygenases,
with lead compounds that inhibit OGFOD1, but not PHD2. Such
‘biochemical selectivity’ is not necessarily an issue with clinical
applications as the desired pharmacological effect/safety profile
may be achieved by controlling metabolism and tissue distribution.
However, we propose that, at least for chronic applications,
biochemical selectivity could and should be optimized during the
development of 2OG oxygenase inhibitors. We also hope that
inhibitors selective for particular 2OG oxygenases may enable
their biological roles to be deciphered.
[13] M. V. Nesterchuk, P. V. Sergiev, O. A. Dontsova, Acta Naturae 2011, 3,
22-33.
[14] L. E. Alksne, R. A. Anthony, S. W. Liebman, J. R. Warner, Proc. Natl.
Acad. Sci. U. S. A. 1993, 90, 9538-9541.
[15] R. Chowdhury, I. K. Leung, Y. M. Tian, M. I. Abboud, W. Ge, C. Domene,
F. X. Cantrelle, I. Landrieu, A. P. Hardy, C. W. Pugh, P. J. Ratcliffe, T. D.
Claridge, C. J. Schofield, Nat. Commun. 2016, 7, 12673.
[16] N. R. Rose, M. A. McDonough, O. N. King, A. Kawamura, C. J. Schofield,
Chem. Soc. Rev. 2011, 40, 4364-4397.
[17] J. D. Vasta, K. A. Andersen, K. M. Deck, C. P. Nizzi, R. S. Eisenstein, R.
T. Raines, ACS Chem. Biol. 2016, 11, 193-199.
[18] M. C. Chan, J. P. Holt-Martyn, C. J. Schofield, P. J. Ratcliffe, Mol.
Aspects Med. 2016, 47-48, 54-75.
[19] K. M. Keeling, X. Xue, G. Gunn, D. M. Bedwell, Annu. Rev. Genomics
Hum. Genet. 2014, 15, 371-394.
[20] W. Ge, A. Wolf, T. Feng, C. H. Ho, R. Sekirnik, A. Zayer, N. Granatino,
M. E. Cockman, C. Loenarz, N. D. Loik, A. P. Hardy, T. D. Claridge, R.
B. Hamed, R. Chowdhury, L. Gong, C. V. Robinson, D. C. Trudgian, M.
Jiang, M. M. Mackeen, J. S. McCullagh, Y. Gordiyenko, A. Thalhammer,
A. Yamamoto, M. Yang, P. Liu-Yi, Z. Zhang, M. Schmidt-Zachmann, B.
M. Kessler, P. J. Ratcliffe, G. M. Preston, M. L. Coleman, C. J. Schofield,
Nat. Chem. Biol. 2012, 8, 960-962.
Acknowledgements
[21] R. Chowdhury, R. Sekirnik, N. C. Brissett, T. Krojer, C. H. Ho, S. S. Ng,
I. J. Clifton, W. Ge, N. J. Kershaw, G. C. Fox, J. R. C. Muniz, M. Vollmar,
C. Phillips, E. S. Pilka, K. L. Kavanagh, F. von Delft, U. Oppermann, M.
A. McDonough, A. J. Doherty, C. J. Schofield, Nature 2014, 510, 422-
426.
We thank the Wellcome Trust, Cancer Research UK, and the
Biotechnology and Biological Sciences Research Council
(BBSRC) for supporting our research on 2OG-dependent
oxygenases. C.L. thanks the Leverhulme Trust for an Early
Career Fellowship.
[22] S. Markolovic, Q. Zhuang, S. E. Wilkins, C. D. Eaton, M. I. Abboud, M. J.
Katz, H. E. McNeil, R. K. Leśniak, C. Hall, W. B. Struwe, R. Konietzny,
S. Davis, M. Yang, W. Ge, J. L. P. Benesch, B. M. Kessler, P. J. Ratcliffe,
M. E. Cockman, R. Fischer, P. Wappner, R. Chowdhury, M. L. Coleman,
C. J. Schofield, Nat Chem Biol 2018, 14, 688-695.
Keywords: barbiturate • inhibitors • medicinal chemistry •
OGFOD1 • oxygenase
[23] T. Feng, A. Yamamoto, S. E. Wilkins, E. Sokolova, L. A. Yates, M.
Münzel, P. Singh, R. J. Hopkinson, R. Fischer, M. E. Cockman, J.
Shelley, D. C. Trudgian, J. Schödel, J. S. McCullagh, W. Ge, B. M.
Kessler, R. J. Gilbert, L. Y. Frolova, E. Alkalaeva, P. J. Ratcliffe, C. J.
Schofield, M. L. Coleman, Mol Cell 2014, 53, 645-654.
[1]
[2]
C. J. Schofield, P. J. Ratcliffe, Nat. Rev. Mol. Cell Biol. 2004, 5, 343-354.
S. E. Wilkins, M. I. Abboud, R. L. Hancock, C. J. Schofield,
ChemMedChem 2016, 11, 773-786.
[3]
[4]
J. D. Webb, M. L. Coleman, C. W. Pugh, Cell. Mol. Life Sci. 2009, 66,
3539-3554.
[24] M. A. McDonough, C. Loenarz, R. Chowdhury, I. J. Clifton, C. J.
Schofield, Curr. Opin. Struct. Biol. 2010, 20, 659-672.
W. S. Aik, R. Chowdhury, I. J. Clifton, R. J. Hopkinson, T. Leissing, M. A.
McDonough, R. Nowak, C. J. Schofield, L. J. Walport, Introduction to
structural studies on 2-oxoglutarate-dependent oxygenases and related
enzymes, Royal Society of Chemistry, 2015, p. 59.
[25] R. Chowdhury, M. A. McDonough, J. Mecinović, C. Loenarz, E.
Flashman, K. S. Hewitson, C. Domene, C. J. Schofield, Structure 2009,
17, 981-989.
[26] C. C. Thinnes, A. Tumber, C. Yapp, G. Scozzafava, T. Yeh, M. C. Chan,
T. A. Tran, K. Hsu, H. Tarhonskaya, L. J. Walport, S. E. Wilkins, E. D.
Martinez, S. Müller, C. W. Pugh, P. J. Ratcliffe, P. E. Brennan, A.
Kawamura, C. J. Schofield, Chem. Commun. 2015, 51, 15458-15461.
[27] P. J. McKiernan, Drugs 2006, 66, 743-750.
[5]
[6]
C. Loenarz, C. J. Schofield, Nat. Chem. Biol. 2008, 4, 152-156.
K. L. Gorres, R. T. Raines, Crit. Rev. Biochem. Mol. Biol. 2010, 45, 106-
124.
[7]
R. S. Singleton, P. Liu-Yi, F. Formenti, W. Ge, R. Sekirnik, R. Fischer, J.
Adam, P. J. Pollard, A. Wolf, A. Thalhammer, C. Loenarz, E. Flashman,
A. Yamamoto, M. L. Coleman, B. M. Kessler, P. Wappner, C. J.
Schofield, P. J. Ratcliffe, M. E. Cockman, Proc. Natl. Acad. Sci. U. S. A.
2014, 111, 4031-4036.
[28] G. R. Moran, Arch Biochem Biophys 2005, 433, 117-128.
[29] M. J. Koury, V. H. Haase, Nat. Rev. Nephrol. 2015, 11, 394.
[30] R. Chowdhury, J. I. Candela-Lena, M. C. Chan, D. J. Greenald, K. K.
Yeoh, Y. M. Tian, M. A. McDonough, A. Tumber, N. R. Rose, A. Conejo-
Garcia, M. Demetriades, S. Mathavan, A. Kawamura, M. K. Lee, F. van
Eeden, C. W. Pugh, P. J. Ratcliffe, C. J. Schofield, ACS Chem Biol 2013,
8, 1488-1496.
[8]
[9]
C. Loenarz, R. Sekirnik, A. Thalhammer, W. Ge, E. Spivakovsky, M. M.
Mackeen, M. A. McDonough, M. E. Cockman, B. M. Kessler, P. J.
Ratcliffe, A. Wolf, C. J. Schofield, Proc. Natl. Acad. Sci. U. S. A. 2014,
111, 4019-4024.
[31] R. Chowdhury, K. K. Yeoh, Y. M. Tian, L. Hillringhaus, E. A. Bagg, N. R.
Rose, I. K. Leung, X. S. Li, E. C. Woon, M. Yang, M. A. McDonough, O.
N. King, I. J. Clifton, R. J. Klose, T. D. Claridge, P. J. Ratcliffe, C. J.
Schofield, A. Kawamura, EMBO Rep. 2011, 12, 463-469.
M. J. Katz, J. M. Acevedo, C. Loenarz, D. Galagovsky, P. Liu-Yi, M.
Pérez-Pepe, A. Thalhammer, R. Sekirnik, W. Ge, M. Melani, M. G.
Thomas, S. Simonetta, G. L. Boccaccio, C. J. Schofield, M. E. Cockman,
P. J. Ratcliffe, P. Wappner, Proc. Natl. Acad. Sci. U. S. A. 2014, 111,
4025-4030.
[32] F. H. Niesen, H. Berglund, M. Vedadi, Nat. Protoc. 2007, 2, 2212-2221.
[33] T.-L. Yeh, T. M. Leissing, M. I. Abboud, C. C. Thinnes, O. Atasoylu, J. P.
Holt-Martyn, D. Zhang, A. Tumber, K. Lippl, C. T. Lohans, I. K. H. Leung,
H. Morcrette, I. J. Clifton, T. D. W. Claridge, A. Kawamura, E. Flashman,
X. Lu, P. J. Ratcliffe, R. Chowdhury, C. W. Pugh, C. J. Schofield, Chem.
Sci. 2017, 8, 7651-7668.
[10] S. Horita, J. S. Scotti, C. Thinnes, Y. S. Mottaghi-Taromsari, A.
Thalhammer, W. Ge, W. Aik, C. Loenarz, C. J. Schofield, M. A.
McDonough, Structure 2015, 23, 639-652.
[11] T. M. Schmeing, V. Ramakrishnan, Nature 2009, 461, 1234-1242.
This article is protected by copyright. All rights reserved.