3
2. (a) Platt KL, Oesch F. J. Org. Chem. 1983; 48: 265;
(b) Zambrao JL, Dorta R. Synlett 2003; 1545
(c) Crandall JK, Zucco M, Kircch RS, Coppert DM. Tetrahedron
Lett. 1991; 32: 5441.
Table 3. Rh-catalyzed O–H insertion reaction of 3-alkoxycarbonyl-
1,2-diazonaphthoquinone 2a.
3. For reviews, see: (a) Kitamura M. J. Synth. Org. Chem., Jpn.
2014; 72: 14;
(b) Kitamura M. Chem. Rec. DOI: 10.1002/tcr.201600118;
(c) Othman DIA, Kitamura M. Heterocycles, 2016; 92: 1761.
4. (a) Kitamura M, Tashiro N, Sakata R, Okauchi T. Synlett 2010;
2503;
(b) Kitamura M, Sakata R, Tashiro N, Ikegami A, Okauchi T. Bull.
Chem. Soc. Jpn., 2015; 88: 824.
Run
R1
2
R2
time
(h)
0.5
2.5
1
product
yield
(%)
0
5. (a) Reiser A, Shilh HY, Yeh TF, Huang JP. Angew. Chem. Int. Ed,
1996; 35: 2428;
1
2
3
4
5
6
7
H
OTf
2a
2b
2c
2a
2b
2c
2c
H
H
4h
4j
(b) Reiser A, Huang JP, He X, Yeh TF, Jha S, Shih HY, Kim MS,
Han YK, Yan K. Eur. Polym. J. 2002; 38: 619;
(c) Fukukawa K-i, Ueda M. Polym. J. 2008; 40: 281.
6. (a) Kitamura M, Sakata R, Okauchi T. Tetrahedron Lett. 2011; 52:
1931;
0
CO2Me
H
OTf
H
4b
7a
7b
7c
7d
67
86
86
97
91
Me
Me
Me
≡CCH
3
3
CO2Me
CO2Me
1
(b) Kitamura M, Kisanuki M, Sakata R, Okauchi T. Chem. Lett.
2011; 40: 1129;
b
HC
3
2
a Reaction conditions: 3.0 mol% Rh2(OAc)4 in benzene (0.01 M for 2) at 60
(c) Kitamura M, Kisanuki M, Okauchi T. Eur. J. Org. Chem.
2012; 905;
°C.
b MS 4A was added in reaction mixture.
(d) Kitamura M, Araki K, Matsuzaki H, Okauchi T. Eur. J. Org.
Chem. 2013; 5045: 35;
(e) Kitamura M, Kubo K, Yoshinaga S, Matsuzaki H, Ezaki K,
Matsuura T, Matsuura D, Fukuzumi N, Araki K, Narasaki M.
Tetrahedron Lett. 2014; 55: 1653;
(f) Kitamura M, Kisanuki M, Kanemura K, Okauchi T. Org. Lett.
2014; 16: 1554;
In Scheme 3, possible reaction mechanism is depicted for the
Rh2(OAc)4-catalyzed formation of naphthalenediol derivatives
from DNQ 1 by reaction with alcohol. We confirmed that the O–
H insertion reaction did not proceed in the absence of Rh(II)
catalyst, and the reaction was not affected strongly in the
presence of radical-trap reagent such as TEMPO (2,2,6,6-
tetramethylpiperidine 1-oxyl).12 Therefore, we suppose this O–H
insertion reaction proceeds via Rh(II) carbene as intermediate.
First, Rh2(OAc)4 reacts with DNQ 1 to form Rh(II) carbene
complex I. Nucleophilic attack of alcohol on carbene complex I
proceeds to form oxonium ylide II, and then aromatization and
deprotonation proceeds to form 5 with releasing Rh2(OAc)4.
(g) Kitamura M, Takahashi S, Okauchi T. J. Org. Chem. 2015; 80:
8406;
7. Recent reaction of diazonaphthoquinone by other groups, see: (a)
Bahadur K, Magar S, Lee YR. Org. Lett. 2013; 15: 4288.
(b) Baral EKR, LeeYR, Kim SH. Adv. Synth. Catal. 2015; 357:
2883;
(c) Baral EKR, Lee YR, Kim SH, Wee YJ. Synthesis 2016; 48,
579.
8. For reviews of metal-catalyzed reaction of diazo compounds, see:
(a) Padwa A, Krumpe KE. Tetrahedron 1992; 48: 5385;
(b) Ye T, McKervey MA. Chem. Rev. 1994; 94: 1091;
(c) Doyle M. P.; Ye, T.; McKervey, M. A. Modern Catalytic
Methods for Organic Synthesis with Diazo Compounds; John
Wiley & Sons: New York, 1998;
(d) Davies HML, Beckwith RE. J. Chem. Rev. 2003; 103: 2861;
(e) Zhang Z, Wang J. Tetrahedron 2008; 64: 6577;
(f) Doyle MP, Duffy R, Ratnikov M, Zhou L. Chem. Rev. 2010;
110: 704.
9. Rh-catalyzed O–H insertion reaction of diazocarbonyl compounds
with water or alcohols, see: (a) Paulissen R, Reimlinger H, Hayez
E, Hubert AJ, Teyssié P. Tetrahedron Lett. 1973; 2233;
(b) Noels AF, Demonceau A, Petiniot N, Hubert AJ, Teyssié P.
Tetrahedron 1982; 38: 2733;
Scheme 3. Plausible reaction mechanism.
(c) Bulugahapitiya P, Landais. Y, Parra-Rapado L, Planchenault
D, Weber V. J. Org. Chem. 1997; 62: 1630.
10. We reported several methods for the synthesis of protected 1,2-
naphthalenediols by metal-catalyzed reaction of
diazonaphthoquinones: see ref. 6b,c,f.
11. Stability of naphthalenediols and naphthols, see:
(a) Foti, MC, Johnson ER, Vinqvist MR, Wright JS, Barclay LRC,
Ingold, KU. J. Org. Chem. 2002; 67: 5190;
In conclusion, we developed the Rh2(OAc)4-catalyzed
synthesis of 1,2-naphthalenediol derivatives by the reaction of
DNQs with water/alcohol.
Acknowledgments
(b) Pino E, Aspée A, López-Alarcón C, Lissi E. J. Phys. Org.
Chem. 2006; 19: 867.
This work was supported by JSPS KAKENHI Grant Number
26410054.
12. When 1 equiv. of TEMPO was added in the same reaction
conditions of Table 2, Run 2, O-H insertion product 5a was
obtained in 81% and DNQ 1b was recovered in 7 % after stirring
for 11 h.
References and notes
Supplementary Material
1. (a) Stahl P, Kissau L, Mazitschek R, Huwe A, Furet P, Giannis A,
Waldmann H. J. Am. Chem. Soc. 2001; 123: 11586;
(b) Lu T, Shao P, Mathew L, Sand A, Sun W. J. Am. Chem. Soc.
2008; 130: 15782;
Supplementary data associated with this article can be found,
in the online version.
(c) Madan S, Cheng C. J. Org. Chem. 2006; 71: 8312.