Antimutagenic Activity of Phenylpropanoids
J. Agric. Food Chem., Vol. 51, No. 22, 2003 6421
Recently, the antimutagenic activity of cinnamaldehyde was
reported frequently. Cinnamaldehyde reduced 4NQO- and UV-
induced mutagenesis, as well as mutagenesis induced by
furylfuramide (AF-2) in E. coli WP2s, and it might act by
interfering with an inducible error prone DNA repair pathway
(10) Olive, P L.; Durand, R. E. Penetration of AF-2 and 4NQO into
multicell spheroids. EnViron. Mutagen 1983, 5 (4), 553-563.
(
11) Olive, P. L. Cellular metabolism of fluorescent nitroheterocycles.
Int. J. Radiat. Oncol. Biol. Phys. 1984, 10 (8), 1357-1360.
12) Watanabe, K.; Ohta, T.; Watanabe, M.; Kato, T.; Shirasu, Y.
Inhibition of induction of adaptive response by o-vanillin in
Escherichia coli B. Mutat. Res. 1990, 243, 273-280.
13) Hagggerty, H. G.; Kim, B. S.; Holsapple, M. P. Characterization
of the effects of direct alkylators on in vitro immune responses.
Mutat. Res. 1990, 242, 67-78.
14) Ishikawa, T.; Takayama, S.; Kitagawa, T.; Kawachi, T.; Sug-
imura, T. Induction of enzyme-altered islands in rat liver by
tryptophan pyrolysis products. J. Cancer Res. Clin. Oncol. 1979,
95 (3), 221-224.
(
(40). Cinnamaldehyde was shown to suppress Hprt mtations in
UV- and X-ray-exposed V79 cells (41). In human-derived
hepatoma cells, cinnamaldehyde suppressed the frequency of
micronuclei induced by a variety of heterocyclic amines (42).
Dehydrodieugenol has been isolated from Litsea turfosa (43),
Ocotea cymbarum (44), Virola carinata (45), and Nectandra
polita (46). Coniferyl aldehyde also has been isolated from some
natural sources including SalVia plebeia (47) and Balanophora
latisepala (48). Taira et al. reported that dehydrodieugenol and
coniferyl aldehyde had hydroxyl radical scavenging abilities
(
(
(15) Groopman, J. D.; Cain, L. G. Interactions of fungal and plant
toxins with DNA: aflatoxins with DNA: aflatoxins, sterigma-
cystin, safrole, cycasin, and pyrrolizidine alkaloids. In Chemical
Carcinogenesis and Mutagenesis I; Cooper, C. S., Grover, L.
P., Eds.; Springer-Verlag: New York, 1990; pp 373-407.
(49). However, inhibition of mutagen-induced SOS response
by dehydrodieugenol and trans-coniferyl aldehyde has not been
reported. In summary, this research suggests that suppressive
compounds on SOS response against chemical and physical
mutagens in clove (S. aromaticum) were primarily dehydro-
dieugenol (1) and trans-coniferyl aldehyde (2) and that com-
pounds 1 and 2 and their derivatives showed potent suppressive
effects of the SOS-inducing activity by chemical and physical
mutagens and potent inhibition of the mutagenicity against
chemical mutagens.
We expect that the antimutagenic compounds isolated from
clove (S. aromaticum) will be useful cancer chemopreventive
agents. However, these compounds may not exhibit their
expected effects in vivo if they are adversely affected by factors
such as absorption, biodisposition, and metabolism after they
are incorporated into the human body. Further studies with
mammalian cells in vitro or in vivo are needed to determine
the efficacy of these compounds for the prevention of human
cancer.
(
16) Selkirk, J. K.; Macleod, M. C.; Moore, C. J.; Mansfield, B. K.;
Nikbakht, A.; Dearstone, K. Spices variance in the metabolic
activation of polycyclic hydrocarbons. In Mechanism of Chemical
Carcinogenesis; Harris, C. C., Cerutti, P. A., Eds.; Liss: New
York, 1982; pp 331-334.
(
17) Lee, B.-H.; Lee, S.; Kim, Y.-S.; Bertram, B.; Wiessler, M.
Chemopreventive effects of S-(N,N-diethyldithiocarbamoyl)-N-
acetyl-L-cysteine against benzo[a]pyrene. Mutat. Res. 1997, 377,
167-175.
(18) Ragasa, C. Y.; Rideout, J. A.; Sy, J. O.; Alcachupas, D.; Inte,
V. M. L.; Coll, J. C. Bioactive monoterpene glycosides from
Erigeron linifolius. Phytochemistry 1997, 46 (1), 151-154.
(
(
(
(
19) Mitscher, L. A.; Telikepalli, H.; McGhee, E.; Shankel, D. M.
Natural antimutagenic agents. Mutat. Res. 1996, 350, 143-152.
20) Bakalinsky, A. T.; Nadathur, S. R.; Carney, J. R.; Gould, S. J.
Antimutagenicity of yogurt. Mutat. Res. 1996, 350, 199-200.
21) Uenobe, F.; Nakamura, S.; Miyazawa, M. Antimutagenic effect
of resveratrol against Trp-P-1. Mutat. Res. 1997, 373, 197-200.
22) Jang, M.; Cai, L.; Udeani, G. O.; Slowing, K. V.; Thomas, C.
F.; Beecher, C. W. W.; Fong, H. H. S.; Fransworth, N. R.;
Kinghorn, A. D.; Mehta, R. G.; Moon, R. C.; Pezzuto, J. M.
Cancer chemopreventive activity of resveratrol, a natural product
derived from grapes. Science 1997, 275 (5297), 218-220.
23) Shanghai Science and Technologic Publisher and Shougakukan.
The Dictionary of Chinese Drugs; Shougakukan: Tokyo, 1988;
Vol. III, pp 3624-3629.
ACKNOWLEDGMENT
We thank Dr. Yoshimitsu Oda for the generous gift of the test
+
strain E. coli CSH 26T/Flac .
LITERATURE CITED
(
(
(
(
1) Namiki, M. Antimutagen and Anticarcinogen Rearch in Japan.
In Food Phytochemicals for Cancer PreVention III; Huang, M.-
T., Osawa, T., Ho, C.-T., Rosen, R. T., Eds.; Maple Press: York,
24) Zheng, G.-Q.; Kenny, P. M.; Lam, L. K. T. Sesquiterpens from
clove (Eugenia caryophyllata) as potential anticarcinogenic
agents. J. Nat. Prod. 1992, 55, 999-1003.
1
994; Vol. 546, pp 64-81.
2) Kee, M. Cancer Causation in Booklet Form. Nature 1983, 303,
48.
3) Shinohara, K. Inhibition of Carcinogenesis Process by Vegetable
Components. Shokuhin Kogyo 1993, 54-64.
4) Ames, B. N.; McCann, J.; Yamasaki, E. Methods for detecting
carcinogens and mutagens with the Salmonella/mammalian-
microsome mutagenicity test. Mutat. Res. 1975, 31, 347-363.
5) Oda, Y.; Nakamura, S.; Oki, I. Evaluation of the new system
(
(
(
25) Tanaka, T.; Orii, Y.; Nonaka, G.; Nishioka, I. Tannins and related
compounds. CXXXIII. Chromone, acetophenone and phenyl-
propanoid glycosides and their galloyl and/or hexahydroxydiphe-
noyl ester from the leaves of Syzygium aromaticum Merr. et
Perry. Chem. Pharm. Bull. 1993, 41, 1 (7), 1232-1237.
26) Umehara, K.; Takagi, R.; Kuroyanagi, M.; Ueno, A.; Taki, T.;
Chen, Y.-J. Studies on differentiation-inducing activities of
triterpenes. Chem. Pharm. Bull. 1992, 40 (2), 401-405.
27) Farag, R. S.; Badei, A. Z. M. A.; Hewedi, F. M.; El-Baroty, G.
S. A. Antioxidant activity of some spice essential oils on linoleic
acid oxidation in aqueous media. J. Am. Oil Chem. Soc. 1989,
6
(
(
(
(umu-test) for the detection of environmental mutagens and
carcinogens. Mutat. Res. 1985, 147, 219-229.
(
6) Nakamura, S.; Oda, Y.; Shimada, T. SOS-inducing activity of
chemical carcinogens in Salmonella typhimirium TA1535/
pSK1002: examination with 151 chemicals. Mutat. Res. 1987,
6
6, 792-799.
(
28) Farag, R. S.; Badei, A. Z. M. A.; Hewedi, F. M.; El-Baroty, G.
S. A. Influence of thyme and clove essential oils on cottonseed
oil oxidation. J. Am. Oil Chem. Soc. 1989, 66, 800-804.
1
92, 239-246.
(
(
(
7) Reifferscheid, G.; Heil, J. Vaalidation of the SOS/umu test using
test results of 486 chemicals and comparison with the Ames test
and carcinogenicity data. Mutat. Res. 1996, 369, 129-145.
8) Tazima, Y.; Kada, T.; Murakami, A. Mutagenicity of nitrofuran
derivatives, including furylfuramide, a food preservative. Mutat.
Res. 1975, 32, 55-80.
9) Ohta, T.; Watanabe, K.; Moriya, M.; Shirasu, Y.; Kada, T.
Antimutagenic effects of cinnamaldehyde on chemical mutagen-
esis in Escherichia coli. Mutat. Res. 1983, 107, 219-227.
(29) Purswglove, J. W.; Brown, E. G.; Green, C. L.; Robbins, S. R.
J. Spices 1981, 1, 255.
(30) Miyazawa, M.; Okuno, Y.; Nakamura, S.; Kameoka, H. Sup-
pression of SOS-inducing activity of chemical mutagens by
cinnamic acid derivatives from Scrophulia ningpoensis in the
Salmonella typhimurium TA1535/pSK1002 umu test. J. Agric.
Food Chem. 1998, 46 (3), 904-910.