While the parent BINOL 1 works well as a ligand in a number
of catalytic asymmetric systems, several modified versions of
BINOL have been utilized in attempts to further improve such
reactions.1b One modification has been achieved by a formal
partial hydrogenation of BINOL 1 to give H4-BINOL 2 and
H8-BINOL 3.
A New Method for the Synthesis of H4-BINOL
Lars V. Heumann and Gary E. Keck*
Department of Chemistry, UniVersity of Utah, 315 South
1400 East, Room 2020, Salt Lake City, Utah 84112-0850
ReceiVed February 26, 2008
Both the H4-BINOL 2 and H8-BINOL 3 ligands have been
shown to work well in a number of catalytic asymmetric
reactions12 including the addition of alkylzinc and alkylalumi-
num reagents to aldehydes and the hetero-Diels-Alder addition
with Danishefsky’s diene.13 In addition, the enantioselectivities
obtained with these ligands surpassed those observed for
reactions with the parent BINOL 1 as a ligand.
Recently, we were interested in examining the use of H8-
BINOL and H4-BINOL in an asymmetric vinylogous Mu-
kaiyama aldol reaction catalyzed by BINOL/Ti(OiPr)4 (BITIP).5a
While H8-BINOL is commercially available, to our knowledge,
H4-BINOL is not. Moreover, the only published method for the
preparation of H4-BINOL involves heating a mixture of Ni/Al
alloy, NaOH, H2O, iPrOH, and MOM2-BINOL to 80 °C for
24 h at a concentration of 3 µmol/L (ca. 1 L of solvent for 1 g
of substrate) followed by protective group removal, including
chromatographic purification following each operation.14 The
prospect of using the above process for a gram-to-multigram
scale synthesis of H4-BINOL 3 led us to examine the develop-
ment of an alternative procedure.
A method amenable to the gram scale synthesis of (R)-H4-
BINOL, a derivative of (R)-BINOL and ligand of interest in
asymmetric catalysis, is described. The key step is the net
partial hydrogenation of (R)-BINOL made possible by prior
bis-etherification of the parent BINOL.
A versatile ligand that has found widespread use in asym-
metric catalysis is BINOL (S)-1 and (R)-1.1 Both BINOL
enantiomers are commercially available or can be synthesized
from inexpensive starting materials in enantioenriched form
(g98:2 er), or as a racemic mixture followed by subsequent
optical resolution.1–3 The BINOL enantiomers have been
extensively used as chiral ligands in catalysis, especially in
combination with Ti(IV) salts. The BINOL/Ti(IV) system
catalyzes a number of asymmetric reactions1 including allyl and
Mukaiyama aldol additions to aldehydes,4,5 hetero-Diels-Alder
reactions,6,7 ene reactions,8 reduction of ketones and aldehydes,9,10
and oxidation of sulfides.11
H8-BINOL 3 has been accessed from BINOL 1 by using
several different hydrogenation conditions;15,16 among these, a
(4) (a) Keck, G. E.; Krishnamurthy, D.; Roush, W. R.; Reilly, M. L. Org.
Synth. 1998, 75, 12. (b) Keck, G. E.; Geraci, L. S. Tetrahedron Lett. 1993, 34,
7827. (c) Keck, G. E.; Tarbet, K. H.; Geraci, L. S. J. Am. Chem. Soc. 1993,
115, 8467. (d) Keck, G. E.; Krishnamurthy, D.; Grier, M. C. J. Org. Chem.
1993, 58, 6543.
(5) (a) Heumann, L. V.; Keck, G. E. Org. Lett. 2007, 9, 4275. (b) Keck,
G. E.; Krishnamurthy, D. J. Am. Chem. Soc. 1995, 117, 2363.
(6) (a) Terada, M.; Mikami, K.; Nakai, T. Tetrahedron Lett. 1991, 32, 935.
(b) Mikami, K.; Terada, M.; Motoyama, Y.; Nakai, T. Tetrahedron: Asymmetry
1991, 2, 643.
(7) (a) Keck, G. E.; Krishnamurthy, D. Synth. Commun. 1996, 26, 367. (b)
Keck, G. E.; Li, X.-Y.; Krishnamurthy, D. J. Org. Chem. 1995, 60, 5998.
(8) (a) Mikami, K.; Terada, M.; Nakai, T. J. Am. Chem. Soc. 1989, 111,
1940. (b) Mikami, K.; Terada, M.; Nakai, T. J. Am. Chem. Soc. 1990, 112, 3949.
(9) Keck, G. E.; Krishnamurthy, D. J. Org. Chem. 1996, 61, 7638.
(10) Imma, H.; Mori, M.; Nakai, T. Synlett 1996, 1229.
(1) (a) For a recent comprehensive review on the preparation and the use of
BINOL as a ligand, see: Brunel, J. M. Chem. ReV. 2005, 105, 857. (b) For a
recent review on modified BINOL derivatives with some information on the
parent BINOL, see: Chen, Y.; Yekta, S.; Yudin, A. K. Chem. ReV. 2003, 103,
3155.
(11) Komatsu, N.; Hashizume, M.; Sugita, T.; Uemura, S. J. Org. Chem.
1993, 58, 4529.
(12) (a) Iida, T.; Yamamoto, N.; Matsunaga, S.; Woo, H.-G.; Shibasaki, M.
Angew. Chem., Int. Ed. 1998, 37, 2223. (b) Lin, Y.-M.; Fu, I.-P.; Uang, B.-J.
Tetrahedron: Asymmetry 2001, 12, 3217. (c) Kim, J. G.; Camp, E. H.; Walsh,
P. J. Org. Lett. 2006, 8, 4413.
(2) (a) Brussee, J.; Groenendijk, J. L. G.; Koppele, J. M.; Jansen, A. C. A.
Tetrahedron 1985, 41, 3313. (b) Brussee, J.; Jansen, A. C. A. Tetrahedron Lett.
1983, 24, 3261.
(3) For oxidative coupling of 2-naphthol, see: (a) Villemin, D.; Sauvaget, F.
Synlett 1994, 435. (b) Love, B. E.; Bills, R. A. Synth. Commun. 2002, 32, 2067.
(c) Ji, S. J.; Lu, J.; Zhu, X.; Yang, J.; Lang, J. P.; Wu, L. Synth. Commun. 2002,
32, 3069. For the optical resolution of racemic BINOL, see: (d) Colonna, S.;
Re, A.; Wynberg, H. J. Chem. Soc., Perkin Trans. 1981, 1, 547. (e) Cai, D.;
Hughes, D. L.; Verhoeven, T. R.; Reider, P. Tetrahedron Lett. 1995, 36, 7991.
(13) (a) Wang, B.; Feng, X.; Huang, Y.; Liu, H.; Cui, X.; Jiang, Y. J. Org.
Chem. 2002, 67, 2175. (b) Chan, A. S. C.; Zhang, F.-Y.; Yip, C.-W. J. Am.
Chem. Soc. 1997, 119, 4080. (c) Zhang, F.-Y.; Chan, A. S. C. Tetrahedron:
Asymmetry 1997, 8, 3651. (d) Long, J.; Hu, J.; Shen, X.; Ji, B.; Ding, K. J. Am.
Chem. Soc. 2002, 124, 10.
(14) Shen, X.; Guo, H.; Ding, K. Tetrahedron: Asymmetry 2000, 11, 4321.
10.1021/jo8004556 CCC: $40.75
Published on Web 05/20/2008
2008 American Chemical Society
J. Org. Chem. 2008, 73, 4725–4727 4725