C O M M U N I C A T I O N S
Scheme 4. Diastereochemically Unselective and Selective
Rearrangement of Metalated
2-(Propenyloxy)-2′-propyloxy-1,1′-binaphthyl and Dimetalated
2,2′-Bis(2-methyl-2-propenyloxy)-1,1′-binaphthyl To Afford
Products 7 (70%) and 9 (82%), Respectivelya
the first new stereocenter should have the (S) configuration when
accompanied by (M) helicity and the (R) configuration when
associated with a (P) axis. The second rearrangement must follow
instantaneously, before any structural reorganization can take place.
The conversion of the dimetalated species 10 into the mono-
rearranged species 12 (see Scheme 5) should weaken the intra-
aggregate stabilization and hence provide an extra driving force
for further transformation. Moreover, metal-π interactions18 may
well be operative in the new intermediate 12 (as shown in Scheme
5) and help to prevent a premature structural collapse of this mixed
aggregate. Consequently, also the second rearrangement step will
proceed under (M) f (S) and (P) f (R) stereocontrol.
Acknowledgment. This work was supported by the Swiss
National Science Foundation, Bern (Grant 20-100’336-02)
and the Bundesamt fu¨r Bildung und Wissenschaft, Bern (Grant
C02.0060).
Supporting Information Available: Working procedures and
complete characterization data for compounds 1a, 1b, and 2-9 and
full crystallographic details of compound 1b (including the associated
CIF tables) are provided. This material is available free of charge via
a Conditions: (a) LiC4H9 + KOC(CH3)3 in tetrahydrofuran at -75 °C;
(b) temperature increased to +25 °C; (c) H2O.
Scheme 5. Metamorphosis of the Internal Bisallylmetal Aggregate
10 through the Meisenheimer Complex 11 to the Mixed Aggregate
12, The Intermediate Formed in the First Rearrangement Step
References
(1) (a) Brown, K. J.; Berry, M. S.; Waterman, K. C.; Lingenfelter, D.;
Murdoch, J. R. J. Am. Chem. Soc. 1984, 106, 4717-4723. (b) Takaya,
H.; Akutagawa, S.; Noyori, R. Organic Syntheses; Wiley & Sons: New
York, 1993; Collect. Vol. VIII, pp 57-63.
(2) Cai, D.; Payack, J. F.; Bender, D. R.; Hughes, D. L.; Verhoeven, T. R.;
Reider, P. J. Org. Synth. 1999, 76, 6-11.
(3) Ohta, T.; Ito, M.; Inagaki, K.; Takaya, H. Tetrahedron Lett. 1993, 34,
1615-1616.
(4) (a) Schlosser, M. J. Organomet. Chem. 1967, 8, 9-16. (b) Schlosser,
M.; Strunk, S. Tetrahedron Lett. 1984, 25, 741-744. (c) Schlosser, M.
Mod. Synth. Methods 1992, 6, 227-271.
(5) Schlosser, M.; Strunk, S. Tetrahedron 1989, 45, 2649-2664.
(6) Pure enantiomer: Brunner, H.; Goldbrunner, J. Chem. Ber. 1989, 122,
2005-2009.
(7) (a) Bergmann, E. D.; Szmuszokowicz, J. J. Am. Chem. Soc. 1951, 73,
5153-5155. (b) Hall, D. M.; Turner, E. E. J. Chem. Soc. 1955, 1242-
1251.
(8) Kuhn, R.; Albrecht, O. Liebigs Ann. Chem. 1928, 465, 282-287.
(9) (a) Galsbøl, F.; Steenbøl, P.; Sørensen, B. S. Acta Chem. Scand. 1972,
26, 3605-3611. (b) Cai, D.; Hughes, D. L.; Verhoeven, T. R.; Reider, P.
J. Org. Synth. 1999, 76, 1-5.
(10) Kanoh, S.; Hongoh, Y.; Motoi, M.; Suda, H. Bull. Chem. Soc. Jpn. 1988,
61, 1032-1034.
(11) The (P) descriptor as defined by the IUPAC rules corresponds to the (S)
symbol of the Chemical Abstracts nomenclature system in the same way
as (M) equals (R).
(12) (a) Sharpless, K. B.; Katsuki, T. J. Am. Chem. Soc. 1980, 102, 5974-
5976. (b) Sharpless, K. B.; Woodward, S. S.; Finn, M. G. Pure Appl.
Chem. 1983, 55, 1823-1836. (c) Finn, M. G.; Sharpless, K. B. J. Am.
Chem. Soc. 1991, 113, 113-126.
(13) (a) Pedley, J. B.; Marshall, E. M. J. Phys. Chem., Ref. Data 1983, 12,
967-1031. (b) Hanusa, T. P. Polyhedron 1990, 9, 1345-1362.
(14) Markies, P. R.; Akkerman, O. S.; Bickelhaupt, F.; Smets, W. J. J.; Spek,
A. L. AdV. Organomet. Chem. 1991, 32, 147-226.
Our detailed analysis of the rearrangement process relies on
plausible assumptions. In view of the immense difference in O-M
and C-M bond strength13 (M ) alkali metals), it is safe to surmise
that allylpotassium species and lithium tert-butoxide prevail as soon
as metallomeric equilibrium has been attained. With allyl-allyl
distances of approximately 4.5 Å at a 45° aryl-aryl twist, the allyl
units can readily assemble one on top of the other (constructing
the internal aggregate 10; see Scheme 5) to accommodate one or
two lithium atoms in the pocket thus formed (average C-Li distance
2.3 Å14). On the other hand, no potassium atom (average C-K
distance 3.2 Å14) fits into this gap, not even if the torsion angle
were compressed to unrealistically small 25°. Thus, potassium has
to occupy the outside allyl faces (Scheme 5, species 10). In
agreement with substituent effects on the rearrangement rates,15 we
believe the aryl [1,2]-migration occurs by intramolecular nucleo-
philic substitution (passing through a spiro-6-oxa[5,2]octa-3,5-
dienide Meisenheimer complex 11; see Scheme 5) rather than by
the radical cleavage/recombination sequence16 governing the alkyl
[1,2]-migration and postulated17 for the mono-rearrangement of a
structurally related allyl naphthyl ether. If the carbon-carbon
linking obeys the inversion mode with respect to the location of
the potassium atom (and the retention mode with respect to lithium),
(15) Strunk, S.; Schlosser, M. Eur. J. Org. Chem. 2006, 4393-4397.
(16) (a) Scho¨llkopf, U. Angew. Chem. 1970, 82, 795-805; Angew. Chem.,
Int. Ed. Engl. 1970, 9, 763-773. (b) Tomooka, K.; Yamamoto, H.; Nakai,
T. Liebigs Ann. Chem. 1997, 1275-1281.
(17) Kiyooka, S.-i.; Tsutsui, T.; Kira, T. Tetrahedron Lett. 1996, 37, 8903-
8904.
(18) (a) Moret, E.; Fu¨rrer, J.; Schlosser, M. Tetrahedron 1988, 44, 3539-
3550. (b) Schiemenz, B.; Power, P. P. Angew. Chem. 1996, 108, 2288-
2290; Angew. Chem., Int. Ed. Engl. 1996, 354, 2150-2152. (c) Dinnebier,
R. E.; Behrens, U.; Obrich, F. J. Am. Chem. Soc. 1998, 120, 1430-1433.
JA066462F
9
J. AM. CHEM. SOC. VOL. 128, NO. 50, 2006 16043