169
Roles of Thr in Catalysis by Pyranose 2-Oxidase
O2
kinetic parameters in Table 1 are due to high values of K
,
3. Prongjit, M., Sucharitakul, J., Wongnate, T., Haltrich, D., and Chaiyen, P.
m
(
2009) Biochemistry 48, 4170–4180
especially for the mutants T169N and T169G; the concentra-
O2
4. Sucharitakul, J., Prongjit, M., Haltrich, D., and Chaiyen, P. (2008) Bio-
chemistry 47, 8485–8490
tion of oxygen under air-saturation (0.26 mM) is below the K
m
values of all the mutants (Table 1).
5
. Palfey, B. A., and Massey, V. (1998) in Comprehensive Biological Catalysis,
Vol. III (Michael, S., ed) pp. 83–153, San Diego, Academic Press
All variants except T169A showed parallel-line patterns
when D-Glc or D-Gal were used as substrates. This is similar to
the reaction of WT with D-Glc as a substrate (3). The kinetic
mechanism of WT at pH 7.0 is Ping-Pong where the 2-keto-D-
sugar product is released prior to the oxygen reaction. The par-
allel-line pattern can also be explained by a model in which the
sugar product remains bound during the reaction of molecular
6. Ballou, D. P., Entsch, B., and Cole, L. J. (2005) Biochem. Biophys. Res.
Commun. 338, 590–598
7
8
9
. van Berkel, W. J., Kamerbeek, N. M., and Fraaije, M. W. (2006) J. Biotech-
nol. 124, 670–689
. Orville, A. M., Lountos, G. T., Finnegan, S., Gadda, G., and Prabhakar, R.
(
2009) Biochemistry 48, 720–728
. H e´ roux, A., Bozinovski, D. M., Valley, M. P., Fitzpatrick, P. F., and Orville,
oxygen, but the reduction step is essentially irreversible (k ϾϾ
3
A. M. (2009) Biochemistry 48, 3407–3416
k
) (3). Interestingly, the steady-state kinetics of T169A with 10. Mallett, T. C., and Claiborne, A. (1998) Biochemistry 37, 8790–8802
Ϫ3
1
1
1
1. Ghisla, S., and Massey, V. (1989) Eur. J. Biochem. 181, 1–17
D-Glc or D-Gal as substrates show an intersecting-line pattern
instead of a parallel-line pattern, suggesting that, for T169A,
2. Albrecht, M., and Lengauer, T. (2003) Bioinformatics 19, 1216–1220
3. Hallberg, B. M., Leitner, C., Haltrich, D., and Divne, C. (2004) J. Mol. Biol.
regardless of the sugar used, the reaction of O with the reduced
2
341, 781–796
enzyme may occur while the 2-keto-D-sugar remains bound to
the enzyme. These data also imply that the reverse rate constant
1
4. Kujawa, M., Ebner, H., Leitner, C., Hallberg, B. M., Prongjit, M., Suchari-
takul, J., Ludwig, R., Rudsander, U., Peterbauer, C., Chaiyen, P., Haltrich,
D., and Divne, C. (2006) J. Biol. Chem. 281, 35104–35115
(
k
in Fig. 4A) of T169A is significant, in agreement with its
Ϫ3
oЈ
low E . The ternary-complex pattern indicates that a 2-keto- 15. Salaheddin, C., Spadiut, O., Ludwig, R., Tan, T. C., Divne, C., Haltrich, D.,
m
and Peterbauer, C. (2009) Biotechnol. J. 4, 535–543
sugar product resulting from the reductive half-reaction fails to
1
6. Bannwarth, M., Heckmann-Pohl, D., Bastian, S., Giffhorn, F., and Schulz
G. E. (2006) Biochemistry 45, 6587–6595
dissociate and remains bound to the active site during the reac-
tion with O in the oxidative half-reaction. One possible expla-
2
1
1
7. Fraaije, M. W., and Mattevi, A. (2000) Trends Biochem. Sci. 25, 126–132
8. Haltrich, D., Leitner, C., Neuhauser, W., Nidetzky, B., Kulbe, K. D., and
Volc, J. (1998) Ann. N.Y. Acad. Sci. 864, 295–299
nation is that space allocation at the re-side of the isoalloxazine
ring is increased in T169A compared with the WT and other
mutants investigated. A shift in the reaction mechanism from 19. Massey, V. (1991) in: Flavins and Flavoproteins (Curti, B., Ronchi, S., and
Zanetti, G., eds) pp. 59–66, Walter de Gruyter, Berlin
the typical Ping-Pong type to a ternary-complex mechanism
2
2
0. Dalziel, K. (1957) Acta Chem. Scand. 11, 1706–1723
was also observed in the reaction of P2O at pH 8 or above (36).
In conclusion, our results suggest that the residue at position
1. Spadiut, O., Leitner, C., Tan, T. C., Ludwig, R., Divne, C., and Haltrich, D.
(
2008) Biocatal. Biotran. 26, 120–127
1
69 is important for both half-reactions in P2O catalysis. Effi-
2
2
2. Kabsch, W. (1993) J. Appl. Crystallogr. 26, 795–800
cient hydride transfer from the sugar C2 to flavin N5 during the
reductive half-reaction requires a residue at this position that
3. Spadiut, O., Leitner, C., Salaheddin, C., Varga, B., Vertessy, B. G., Tan,
T. C., Divne, C., and Haltrich, D. (2009) FEBS J. 276, 776–792
can maintain a H-bonding within the ES complex, i.e. Thr 24. Spadiut, O., Radakovits, K., Pisanelli, I., Salaheddin, C., Yamabhai, M.,
Tan, T. C., Divne, C., and Haltrich, D. (2009) Biotechnol. J. 4, 525–534
(
WT), Ser, Asn, and Gly (H-bond possibly maintained by sol-
2
5. Roberts, D. L., Frerman, F. E., and Kim, J. J. (1996) Proc. Natl. Acad. Sci.
U.S.A. 93, 14355–14360
vent). When compared with the WT, the overall turnover of
T169S and T169N with D-Gal was faster due to higher rate
constants of the flavin reduction. In addition, the side chain of
2
2
6. Yang, K. Y., and Swenson, R. P. (2007) Biochemistry 46, 2289–2297
7. Quaye, O., Lountos, G. T., Fan, F., Orville, A. M., and Gadda, G. (2008)
Biochemistry 47, 243–256
169
Thr is crucial for stabilizing the C4a-hydroperoxy-FAD dur-
ing the oxidative half-reaction and cannot be substituted by 28. Forneris, F., Heuts, D. P., Delvecchio, M., Rovida, S., Fraaije, M. W., and
Mattevi, A. (2008) Biochemistry 47, 978–985
other residues.
2
3
3
9. van den Heuvel, R. H., Fraaije, M. W., Mattevi, A., and van Berkel, W. J.
(
2000) J. Biol. Chem. 275, 14799–14808
0. Yue, Q. K., Kass, I. J., Sampson, N. S., and Vrielink, A. (1999) Biochemistry
8, 4277–4286
1. Chaiyen, P., Brissette, P., Ballou, D. P., and Massey, V. (1997) Biochemistry
Acknowledgments—We thank Janewit Wongratana for constructing
plasmids for expression of T169S, T169N, and T169A and the beam-
line staff scientists at MAX-lab (Lund, Sweden) for support during
data collection. We thank Bruce Palfey for critical reading of the
manuscript.
3
36, 2612–2621
3
3
2. Chaiyen, P. (2010) Arch. Biochem. Biophys. 493, 62–70
3. Alfieri, A., Fersini, F., Ruangchan, N., Prongjit, M., Chaiyen, P., and Mat-
tevi, A. (2007) Proc. Natl. Acad. Sci. U.S.A. 104, 1177–1182
4. Mattevi, A. (2006) Trends Biochem. Sci. 31, 276–283
REFERENCES
1
3
. Halada, P., Leitner, C., Sedmera, P., Haltrich, D., and Volc, J. (2003) Anal. 35. Gibson, Q. H., Swoboda, B. E., and Massey, V. (1964) J. Biol. Chem. 239,
Biochem. 314, 235–242
. Leitner, C., Volc, J., and Haltrich, D. (2001) Appl. Environ. Microbiol. 67, 36. Rungsrisuriyachai, K., and Gadda, G. (2009) Arch. Biochem. Biophys. 483,
636–3644 10–15
3927–3934
2
3
MARCH 26, 2010•VOLUME 285•NUMBER 13
JOURNAL OF BIOLOGICAL CHEMISTRY 9705