Journal of Medicinal Chemistry
Article
(52) Turan, H.; Demirbilek, M. Biofilm-forming capacity of blood-
borne Candida albicans strains and effects of antifungal agents. Rev.
Argent. Microbiol. 2018, 50, 62−69.
(70) Mane, A.; Vidhate, P.; Kusro, C.; Waman, V.; Saxena, V.;
Kulkarni-Kale, U.; Risbud, A. Molecular mechanisms associated with
fluconazole resistance in clinical Candida albicans isolates from India.
Mycoses 2016, 59, 93−100.
(71) Hargrove, T. Y.; Friggeri, L.; Wawrzak, Z.; Qi, A.; Hoekstra, W.
J.; Schotzinger, R. J.; York, J. D.; Guengerich, F. P.; Lepesheva, G. I.
Structural analyses of Candida albicans sterol 14alpha-demethylase
complexed with azole drugs address the molecular basis of azole-
mediated inhibition of fungal sterol biosynthesis. J. Biol. Chem. 2017,
292, 6728−6743.
(72) Franz, R.; Kelly, S. L.; Lamb, D. C.; Kelly, D. E.; Ruhnke, M.;
Morschhauser, J. Multiple molecular mechanisms contribute to a
stepwise development of fluconazole resistance in clinical Candida
albicans strains. Antimicrob. Agents Chemother. 1998, 42, 3065−3072.
(73) Feng, W.; Yang, J.; Xi, Z.; Qiao, Z.; Lv, Y.; Wang, Y.; Ma, Y.;
Wang, Y.; Cen, W. Mutations and/or overexpressions of ERG4 and
ERG11 genes in clinical azoles-resistant isolates of Candida albicans.
Microb. Drug Resist. 2017, 23, 563−570.
(53) Kojic, E. M.; Darouiche, R. O. Candida infections of medical
devices. Clin. Microbiol. Rev. 2004, 17, 255−267.
(54) Nett, J.; Lincoln, L.; Marchillo, K.; Massey, R.; Holoyda, K.;
Hoff, B.; VanHandel, M.; Andes, D. Putative role of beta-1,3 glucans
in Candida albicans biofilm resistance. Antimicrob. Agents Chemother.
2007, 51, 510−520.
(55) Ramage, G.; Bachmann, S.; Patterson, T. F.; Wickes, B. L.;
Lopez-Ribot, J. L. Investigation of multidrug efflux pumps in relation
to fluconazole resistance in Candida albicans biofilms. J. Antimicrob.
Chemother. 2002, 49, 973−980.
(56) Fiori, B.; Posteraro, B.; Torelli, R.; Tumbarello, M.; Perlin, D.
S.; Fadda, G.; Sanguinetti, M. In vitro activities of anidulafungin and
other antifungal agents against biofilms formed by clinical isolates of
different Candida and Aspergillus species. Antimicrob. Agents Chemo-
ther. 2011, 55, 3031−3035.
(57) Dogan, I. S.; Sarac, S.; Sari, S.; Kart, D.; Essiz Gokhan, S.;
Vural, I.; Dalkara, S. New azole derivatives showing antimicrobial
effects and their mechanism of antifungal activity by molecular
modeling studies. Eur. J. Med. Chem. 2017, 130, 124−138.
(58) Thamban Chandrika, N.; Shrestha, S. K.; Ranjan, N.; Sharma,
A.; Arya, D. P.; Garneau-Tsodikova, S. New Application of neomycin
B-bisbenzimidazole hybrids as antifungal agents. ACS Infect. Dis. 2018,
4, 196−207.
(74) Flowers, S. A.; Colon, B.; Whaley, S. G.; Schuler, M. A.; Rogers,
P. D. Contribution of clinically derived mutations in ERG11 to azole
resistance in Candida albicans. Antimicrob. Agents Chemother. 2015,
59, 450−460.
(75) Goldman, G. H.; da Silva Ferreira, M. E.; dos Reis Marques, E.;
Savoldi, M.; Perlin, D.; Park, S.; Godoy Martinez, P. C.; Goldman, M.
H.; Colombo, A. L. Evaluation of fluconazole resistance mechanisms
in Candida albicans clinical isolates from HIV-infected patients in
Brazil. Diagn. Microbiol. Infect. Dis. 2004, 50, 25−32.
(76) Teo, J. Q.; Lee, S. J.; Tan, A. L.; Lim, R. S.; Cai, Y.; Lim, T. P.;
Kwa, A. L. Molecular mechanisms of azole resistance in Candida
bloodstream isolates. BMC Infect. Dis. 2019, 19, 63.
(77) Rosana, Y.; Yasmon, A.; Lestari, D. C. Overexpression and
mutation as a genetic mechanism of fluconazole resistance in Candida
albicans isolated from human immunodeficiency virus patients in
Indonesia. J. Med. Microbiol. 2015, 64, 1046−1052.
(78) Siikala, E.; Rautemaa, R.; Richardson, M.; Saxen, H.; Bowyer,
P.; Sanglard, D. Persistent Candida albicans colonization and
molecular mechanisms of azole resistance in autoimmune poly-
endocrinopathy-candidiasis-ectodermal dystrophy (APECED) pa-
tients. J. Antimicrob. Chemother. 2010, 65, 2505−2513.
(79) Mesa-Arango, A. C.; Rueda, C.; Roman, E.; Quintin, J.; Terron,
M. C.; Luque, D.; Netea, M. G.; Pla, J.; Zaragoza, O. Cell wall changes
in amphotericin B-resistant strains from Candida tropicalis and
relationship with the immune responses elicited by the host.
Antimicrob. Agents Chemother. 2016, 60, 2326−2335.
(80) Hebeka, E. K.; Solotorovsky, M. Development of resistance to
polyene antibiotics in Candida albicans. J. Bacteriol. 1965, 89, 1533−
1539.
(81) Gonzalez-Arellano, C.; Corma, A.; Iglesias, M.; Sanchez, F.
Enantioselective hydrogenation of alkenes and imines by a gold
catalyst. Chem. Commun. 2005, 3451−3453.
(82) Krause, L.; Herbst-Irmer, R.; Sheldrick, G. M.; Stalke, D.
Comparison of silver and molybdenum microfocus X-ray sources for
single-crystal structure determination. J. Appl. Crystallogr. 2015, 48,
3−10.
(83) APEX3; Bruker-AXS Inc.: Madison, WI, U.S., 2016.
(84) Sheldrick, G. M. Crystal structure refinement with SHELXL.
Acta Crystallogr., Sect. C: Struct. Chem. 2015, 71, 3−8.
(85) Sheldrick, G. M. SHELXT - integrated space-group and crystal-
structure determination. Acta Crystallogr., Sect. A: Found. Adv. 2015,
71, 3−8.
(59) Hasan, F.; Xess, I.; Wang, X.; Jain, N.; Fries, B. C. Biofilm
formation in clinical Candida isolates and its association with
virulence. Microbes Infect. 2009, 11, 753−761.
(60) Rodriguez-Cerdeira, C.; Gregorio, M. C.; Molares-Vila, A.;
Lopez-Barcenas, A.; Fabbrocini, G.; Bardhi, B.; Sinani, A.; Sanchez-
Blanco, E.; Arenas-Guzman, R.; Hernandez-Castro, R. Biofilms and
vulvovaginal candidiasis. Colloids Surf., B 2019, 174, 110−125.
(61) Nett, J. E.; Andes, D. R. Fungal biofilms: In vivo models for
discovery of anti-biofilm drugs. Microbiol. Spectrum 2015, 3, e30.
(62) Pongracz, J.; Benedek, K.; Juhasz, E.; Ivan, M.; Kristof, K. In
vitro biofilm production of Candida bloodstream isolates: Any
association with clinical characteristics? J. Med. Microbiol. 2016, 65,
272−277.
(63) Shin, J. H.; Kee, S. J.; Shin, M. G.; Kim, S. H.; Shin, D. H.; Lee,
S. K.; Suh, S. P.; Ryang, D. W. Biofilm production by isolates of
Candida species recovered from nonneutropenic patients: Compar-
ison of bloodstream isolates with isolates from other sources. J. Clin.
Microbiol. 2002, 40, 1244−1248.
(64) Tumbarello, M.; Posteraro, B.; Trecarichi, E. M.; Fiori, B.;
Rossi, M.; Porta, R.; de Gaetano Donati, K.; La Sorda, M.; Spanu, T.;
Fadda, G.; Cauda, R.; Sanguinetti, M. Biofilm production by Candida
species and inadequate antifungal therapy as predictors of mortality
for patients with candidemia. J. Clin. Microbiol. 2007, 45, 1843−1850.
(65) Wang, Y.; Liu, M.; Cao, R.; Zhang, W.; Yin, M.; Xiao, X.; Liu,
Q.; Huang, N. A soluble bis-chelated gold(I) diphosphine compound
with strong anticancer activity and low toxicity. J. Med. Chem. 2013,
56, 1455−1466.
(66) Jeswani, G.; Alexander, A.; Saraf, S.; Saraf, S.; Qureshi, A.;
Ajazuddin. Recent approaches for reducing hemolytic activity of
chemotherapeutic agents. J. Controlled Release 2015, 211, 10−21.
(67) Radwan, M. A.; AlQuadeib, B. T.; Siller, L.; Wright, M. C.;
Horrocks, B. Oral administration of amphotericin B nanoparticles:
Antifungal activity, bioavailability and toxicity in rats. Drug Delivery
2017, 24, 40−50.
(68) Uchida, M.; Sun, Y.; McDermott, G.; Knoechel, C.; Le Gros,
M. A.; Parkinson, D.; Drubin, D. G.; Larabell, C. A. Quantitative
analysis of yeast internal architecture using soft X-ray tomography.
Yeast 2011, 28, 227−236.
(69) Fujioka, A.; Terai, K.; Itoh, R. E.; Aoki, K.; Nakamura, T.;
Kuroda, S.; Nishida, E.; Matsuda, M. Dynamics of the Ras/ERK
MAPK cascade as monitored by fluorescent probes. J. Biol. Chem.
2006, 281, 8917−8926.
(86) Spek, A. L. Structure validation in chemical crystallography.
Acta Crystallogr., Sect. D: Biol. Crystallogr. 2009, 65, 148−155.
(87) Parkin, S. Expansion of scalar validation criteria to three
dimensions: The R tensor. Acta Crystallogr., Sect. A: Found. Crystallogr.
2000, 56, 157−162.
(88) Clinical and Laboratory Standards Institute. Reference method
for broth dilution antifungal susceptibility testing of yeasts - Approved
standard. CLSI document M27-A3. Wayne, PA. 2008.
N
J. Med. Chem. XXXX, XXX, XXX−XXX