Journal of the American Chemical Society
Page 4 of 5
other hand, the dOꢀP distance shows a remarkable enhancement
inside the MOF: in system A2 the probability related to the
formation of the AT precursor is 26ꢀtimes higher than in systems
B. This difference in the binding of the O···P arises from the
interaction between the phenyl groups of the phosphonium and
the steric confinement of the MOF. The three phenyl groups cause
a significant steric hindrance, which results in the shielding the
phosphorous from the nꢀbutanal. However, the MOF limits the
freedom of movement of 4, distorting the tetrahedral
configuration of the phosphonium moiety. This distortion enables
the oxygen attack by the nꢀbutanal due to the attractive
electrostatic interaction between the oppositely charged O
61ꢀ74; (c) Wang, C.; Liu, D.; Lin, W. J. Am. Chem. Soc. 2013, 135,
3222ꢀ13234.
(a) Morris, R. E.; Bu, X. Nat. Chem. 2010, 2, 353ꢀ361; (b)
Nath, I.; Chakraborty, J.; Verpoort, F. Chem. Soc. Rev. 2016, 45, 4127ꢀ
4170.
1
1
2
3
4
5
6
7
8
9
1
1
1
1
1
1
1
1
1
1
2
2
2
2
2
2
2
2
2
2
3
3
3
3
3
3
3
3
3
3
4
4
4
4
4
4
4
4
4
4
5
5
5
5
5
5
5
5
5
5
6
3
.
4
.
Zheng, M.; Liu, Y.; Wang, C.; Liu, S. B.; Lin, W. B. Chem.
Sci. 2012, 3, 2623ꢀ2627.
5.
6.
Zhang, T.; Song, F.; Lin, W. Chem. Commun. 2012, 48, 8766.
Xu, X.; Rummelt, S. M.; Morel, F. L.; Ranocchiari, M.; van
Bokhoven, J. A. Chem. Eur. J. 2014, 20, 15467ꢀ15472.
Xu, X.; van Bokhoven, J. A.; Ranocchiari, M. Chem. Cat.
Chem. 2014, 6, 1887ꢀ1891.
(a) de Meijere, A.; Diederich, F. MetalꢀCatalyzed Crossꢀ
7
.
8
.
0
1
2
3
4
5
6
7
8
9
0
1
2
3
4
5
6
7
8
9
0
1
2
3
4
5
6
7
8
9
0
1
2
3
4
5
6
7
8
9
0
1
2
3
4
5
6
7
8
9
0
Coupling Reactions, Second Completely Revised and Enlarged Edition;
Volume 2. WileyꢀVCH Verlag GmbH & Co. KGaA: Weinheim, Germany,
(ꢀ0.278) and P (0.523) atoms. On the other side, the configuration
with the zwitterion shielded inside the pores of the MOF (A1), are
shown not to be reactive, giving similar results to the B system
(Table S9). MD simulations confirm the active role of the MOF in
alternating the zwitterion's reactivity in A2 as result of the steric
interaction arising between between the ligands of the frameworks
and the phenyl rings.
2
004; p 437 pp; (b) Kamer, P. C. J.; van Leeuwen, P. W. N. M.; Editors,
Phosphorus(III) Ligands in Homogeneous Catalysis: Design and
Synthesis. John Wiley & Sons Ltd.: Chichester, UK, 2012; p 547 pp.
9.
(a) Tudor, R.; Ashley, M. Platinum Metals Review 2007, 51,
1
1
16ꢀ126; (b) Tudor, R.; Ashley, M. Platinum Metals Review 2007, 51,
64ꢀ171.
1
0.
Beller, M.; Blaser, H.ꢀU. Organometallics as Catalysts in the
We have shown that MOFs can effectively bind reaction
intermediates and influence the reactivity of catalytic systems. In
our case the MoritaꢀBaylisꢀHillman (MBH) reaction of nꢀaliphatic
Fine Chemical Industry. SpringerꢀVerlag Berlin Heidelberg, 2012; p 156
pp.
11.
(a) Fan, Y. C.; Kwon, O. Chem. Comm. 2013, 49, 11588ꢀ
1
1619; (b) Xiao, Y.; Sun, Z.; Guo, H.; Kwon, O. Beilstein J. Org. Chem.
aldehydes with methyl vinyl ketone and PPh can be switched to
3
2014, 10, 2089ꢀ2121; (c) Fraile, A.; Parra, A.; Tortosa, M.; Alemán, J.
Tetrahedron 2014, 70, 9145ꢀ9173; (d) Wang, T.; Han, X.; Zhong, F.; Yao,
W.; Lu, Y. Acc. Chem. Res. 2016, 49, 1369ꢀ1378.
exclusively yield the AldolꢀTishchenko (AT) reaction in the
presence of amino containing MixMOFs. This change in
reactivity was shown on a series of different nꢀaliphatic aldehydes
1
2.
774.
3.
Bayne, J. M.; Stephan, D. W. Chem. Soc. Rev. 2016, 45, 765ꢀ
in
various
framework
systems.
The
(3ꢀoxoꢀ2ꢀ
butenyl)triphenylphosphonium zwitterion (4), a commonly known
nucleophile, was identified as catalytic active species.
1
(a) LaFortune, J. H. W.; Johnstone, T. C.; Perez, M.;
Winkelhaus, D.; Podgorny, V.; Stephan, D. W. Dalton Trans. 2016, 45,
18156ꢀ18162; (b) Sereda, O.; Tabassum, S.; Wilhelm, R. Top. Curr.
Chem. 2010, 291, 349ꢀ393.
MixUMCMꢀ1ꢀNH confines the zwitterionic organocatalyst and
2
influences the geometry around the tetrahedral phosphonium
moiety. Simulations suggested the MOF to affect the fine
structure around the phosphonium through new steric interactions
between the host (MOF) and the guest (zwitterion), which opens
the phosphonium moiety to nucleophilic attack. This work shows
a novel way of doing catalysis where MOFs can be used as
additive to trap reaction intermediates yielding unprecedented
reactivity inaccessible under standard reaction conditions.
1
4.
(a) Teruaki, M.; Kouichi, K.; Shigekazu, M. Chem. Lett. 1989,
1
1
2
8, 1397ꢀ1400; (b) Teruaki, M.; Shigekazu, M.; Kouichi, K. Chem. Lett.
989, 18, 993ꢀ996; (c) SamzadehꢀKermani, A. Synlett 2016, 27, 2213ꢀ
216; (d) Werner, T. Adv. Synth. Catal. 2009, 351, 1469ꢀ1481; (e) Garciaꢀ
Garcia, P. In Lewis acid organocatalysts other than ketone and iminium
salt catalysts, Georg Thieme Verlag: Stuttgart 2012; pp 831ꢀ869.
15.
Koskinen, A. M. P.; Kataja, A. O., The Tishchenko Reaction in
Org. React., John Wiley & Sons, Inc.: New York, USA, 2015, 86, 105ꢀ
409.
1
6.
Menozzi, C.; Dalko, P. I., Organocatalytic Enantioselective
ACKNOWLEDGMENTS
Morita–Baylis–Hillman Reactions. In Enantioselective Organocatalysis,
WileyꢀVCH Verlag GmbH & Co. KGaA: Weinheim, Germany, 2007; pp
151ꢀ187.
This work was supported by a grant from the Swiss National
Supercomputing Centre (CSCS) under Project no. s611. The
research of D.O. was supported by the European Research
Council (ERC) under the European Union's Horizon 2020
research and innovation programme (grant agreement No.
1
7.
(a) Luan, Y.; Zheng, N. N.; Qi, Y.; Tang, J.; Wang, G. Catal.
Sci. Tech. 2014, 4, 925ꢀ929; (b) Miao, Z. C.; Qi, C.; Wensley, A. M.;
Luan, Y. RSC Adv. 2016, 6, 67226ꢀ67231.
1
8.
Mol% NH
2
refers to % aminoterephthalate to total
6
66983, MaGic). D.T. and G.B. acknowledge the National Centre
terephthalate content.
of Competence in Research (NCCR) “Materials' Revolution:
Computational Design and Discovery of Novel Materials
19.
20.
See the supporting information.
SerraꢀCrespo, P.; RamosꢀFernandez, E. V.; Gascon, J.;
(MARVEL)” of the Swiss National Science Foundation (SNSF)
Kapteijn, F. Chem. Mater. 2011, 23, 2565ꢀ2572.
21.
Wang, Z.; Tanabe, K. K.; Cohen, S. M. Inorg. Chem. 2009, 48,
which funded their work at EPFL and PSI.
2
96ꢀ306.
2
2.
Koh, K.; WongꢀFoy, A. G.; Matzger, A. J. Angew. Chem. Int.
Ed. 2008, 47, 677ꢀ680.
REFERENCES
23.
(a) Shi, M.; Chen, L.ꢀH.; Li, C.ꢀQ. J. Am. Chem. Soc. 2005,
1
27, 3790ꢀ3800; (b) Lindner, C.; Liu, Y.; Karaghiosoff, K.; Maryasin, B.;
1.
(a) Ranocchiari, M.; van Bokhoven, J. A. Phys. Chem. Chem.
Zipse, H. Chem. Eur. J. 2013, 19, 6429ꢀ6434.
4. Mahrwald, R., The AldolꢀTishchenko Reaction. In Modern
Phys. 2011, 13, 6388ꢀ6396; (b) Gascon, J.; Corma, A.; Kapteijn, F.;
Llabrés i Xamena, F. X. ACS Catal. 2014, 4, 361ꢀ378.
2
Aldol Reactions, WileyꢀVCH Verlag GmbH: Weinheim, Germany, 2008;
pp 327ꢀ344.
2
.
(a) Yaghi, O. M.; O'Keeffe, M.; Ockwig, N. W.; Chae, H. K.;
Eddaoudi, M.; Kim, J. Nature 2003, 423, 705; (b) Gangu, K. K.; Maddila,
S.; Mukkamala, S. B.; Jonnalagadda, S. B. Inorg. Chim. Act. 2016, 446,
4
ACS Paragon Plus Environment