Organic Letters
Letter
showing the feasibility of this method for the synthesis of aryl-
substituted amines. In addition to secondary amines, primary
amine tritylamine (8) also gave a satisfactory result. Finally, we
examined substrate 10 bearing no indolyl amine or benzyl
amine structure (Scheme 4, (ii). Pleasingly, spiro-compound 10
gave a satisfactory result, affording fused compound 11a
bearing a 1-azabicyclo[5.3.0]decane structure, which is found in
biologically active natural products. Notably, a carbon
nucleophile was successfully introduced into the iminium ion
intermediate by reacting with Grignard reagent EtMgBr to
afford 11b bearing a quaternary-substituted carbon center. The
above results suggest that a broad array of substrates are
compatible with these hypervalent iodine mediated oxidative
rearrangement reactions.
M.; Wo
̈
ste, T. H.; Mun
̃
iz, K. Chem. - Asian J. 2014, 9, 972.
(
d) Yoshimura, A.; Zhdankin, V. V. Chem. Rev. 2016, 116, 3328.
4) See ref 2, and for recent examples, see: (a) Ahmad, A.; Scarassati,
P.; Jalalian, N.; Olofsson, B.; Silva, L. F. Tetrahedron Lett. 2013, 54,
818. (b) Liu, L.; Du, L.; Zhang-Negrerie, D.; Du, Y.; Zhao, K. Org.
(
5
Lett. 2014, 16, 5772. (c) Liu, L.; Zhang-Negrerie, D.; Du, Y.; Zhao, K.
Synthesis 2015, 47, 2924. (d) Yadagiri, D.; Anbarasan, P. Chem.
Commun. 2015, 51, 14203. (e) Venkatesan Balaji, P.; Chandrasekaran,
S. Tetrahedron 2016, 72, 1095. (f) Liu, L.; Zhang, T.; Yang, Y.-F.;
Zhang-Negrerie, D.; Zhang, X.; Du, Y.; Wu, Y.-D.; Zhao, K. J. Org.
Chem. 2016, 81, 4058. (g) Nakamura, A.; Tanaka, S.; Imamiya, A.;
Takane, R.; Ohta, C.; Fujimura, K.; Maegawa, T.; Miki, Y. Org. Biomol.
Chem. 2017, 15, 6702.
2
3
(5) The development of enantioselective reactions has also been
actively studied in recent years, see: (a) Farid, U.; Malmedy, F.;
Claveau, R.; Albers, L.; Wirth, T. Angew. Chem., Int. Ed. 2013, 52,
In summary, we present the first hypervalent iodine mediated
oxidative rearrangement reaction of secondary amines. The
transformation, which employs PhI(OAc) in CF CH OH,
7
(
2
(
018. (b) Malmedy, F.; Wirth, T. Chem. - Eur. J. 2016, 22, 16072.
c) Brown, M.; Kumar, R.; Rehbein, J.; Wirth, T. Chem. - Eur. J. 2016,
2, 4030. (d) Ahmad, A.; Silva, L. F., Jr J. Org. Chem. 2016, 81, 2174.
e) Qurban, J.; Elsherbini, M.; Wirth, T. J. Org. Chem. 2017, 82, 11872.
6) (a) Loudon, G. M.; Radhakrishna, A. S.; Almond, M. R.;
2
3
2
allows the direct use of secondary amines as substrates for 1,2-
C-to-N migration reactions. The versatility of this method for
the synthesis of a wide range of amines was demonstrated by its
application to the divergent synthesis of polycyclic and
macrocyclic indole-fused compounds and the reaction of
compounds 4, 6, 8, and 10, including a primary amine, as
shown in Scheme 4. This protocol is also attractive because it
can be readily carried out using a commercially available
hypervalent iodine reagent. Further investigations of these
transformations, including mechanistic studies, are underway in
our laboratory.
(
Blodgett, J. K.; Boutin, R. H. J. Org. Chem. 1984, 49, 4272. (b) Boutin,
R. H.; Loudon, G. M. J. Org. Chem. 1984, 49, 4277. For catalytic
processes, see: (c) Miyamoto, K.; Sakai, Y.; Goda, S.; Ochiai, M. Chem.
Commun. 2012, 48, 982. (d) Yoshimura, A.; Middleton, K. R.;
Luedtke, M. W.; Zhu, C.; Zhdankin, V. V. J. Org. Chem. 2012, 77,
1
1399.
(7) Kelley, B. T.; Walters, J. C.; Wengryniuk, S. E. Org. Lett. 2016, 18,
1896.
(8) For references of Schmidt reactions, see: (a) Wrobleski, A.;
Coombs, T. C.; Huh, C. W.; Li, S.-W.; Aube,
́
J. Org. React. 2012, 78, 1.
ASSOCIATED CONTENT
Supporting Information
(b) Grecian, S.; Aube, J. Organic Azides: Syntheses and Applications;
́
■
John Wiley and Sons: New York, 2010; p 191. (c) Lang, S.; Murphy, J.
A. Chem. Soc. Rev. 2006, 35, 146. (d) Pearson, W. H.; Fang, W.-k. J.
Org. Chem. 2000, 65, 7158. (e) Pearson, W. H.; Walavalkar, R.;
Schkeryantz, J. M.; Fang, W.-k.; Blickensdorf, J. D. J. Am. Chem. Soc.
1993, 115, 10183. (f) Kapat, A.; Nyfeler, E.; Giuffredi, G. T.; Renaud,
P. J. Am. Chem. Soc. 2009, 131, 17746.
*
S
Full experimental details and characterization data (PDF)
(9) Wang, Z. Comprehensive Organic Name Reactions and Reagents;
John Wiley & Sons, Inc, 2010.
AUTHOR INFORMATION
■
*
(10) (a) Gassman, P. G.; Fox, B. L. J. Am. Chem. Soc. 1967, 89, 338.
(b) Schell, F. M.; Ganguly, R. N. J. Org. Chem. 1980, 45, 4069 and
references cited therein. For synthetic applications, see: (c) Grieco, P.
A.; Dai, Y. J. Am. Chem. Soc. 1998, 120, 5128.
ORCID
(
11) For reactions with p-nitrobenzenesulfonyl peroxide, see:
Notes
(a) Hoffman, R. V.; Poelker, D. J. J. Org. Chem. 1979, 44, 2364.
For reactions with a heavy metal oxidant such as lead tetraacetate, see:
(b) Sisti, A. J.; Milstein, S. R. J. Org. Chem. 1974, 39, 3932.
The authors declare no competing financial interest.
(12) For our recent reports on the oxidative rearrangement reaction
with NXS (X = Cl, Br) with the substrates having a large ring strain
such as a cyclobutane ring, see: (a) Murai, K.; Komatsu, H.; Nagao, R.;
Fujioka, H. Org. Lett. 2012, 14, 772. (b) Murai, K.; Shimura, M.;
Nagao, R.; Endo, D.; Fujioka, H. Org. Biomol. Chem. 2013, 11, 2648.
ACKNOWLEDGMENTS
■
This work was financially supported by the Japan Society for
the Promotion of Science (JSPS) KAKENHI Grant Nos.
T17K082100 (K.M.) and A15H046320 (H.F.) and the
Platform for Drug Discovery, Informatics, and Structural Life
Science from MEXT. K.M. acknowledges the research fund
from the Society of Iodine Science (SIS). We are grateful to
Prof. Richmond Sarpong (University of California, Berkeley)
for useful discussions.
(c) Murai, K.; Endo, D.; Kawashita, N.; Takagi, T.; Fujioka, H. Chem.
Pharm. Bull. 2015, 63, 245. (d) Murai, K.; Matsuura, K.; Aoyama, H.;
Fujioka, H. Org. Lett. 2016, 18, 1314.
(13) 8-Membered ring compound 1a was used instead of 6-
membered ring compound 1b because the purification of 2a by SiO2
column chromatography was easier than that of 2b.
(14) For examples, see: (a) Omoyeni, O. A.; Hussein, A. A.; Iwuoha,
E.; Green, I. R. Phytochem. Rev. 2017, 16, 97. (b) Stempel, E.; Gaich,
T. Acc. Chem. Res. 2016, 49, 2390.
(15) Moriarty, R. M.; Vaid, R. K.; Koser, G. F. Synlett 1990, 1990,
REFERENCES
■
(
1) Molecular Rearrangements in Organic Synthesis; Rojas, C. M., Ed.;
John Wiley & Sons, Inc., 2015.
2) Singh, F. V.; Wirth, T. Synthesis 2013, 45, 2499.
365.
(
(16) Higher acidity of (CF
) CHOH (pK of 9.3) might reduce the
3 2 a
(
3) (a) Hypervalent Iodine Chemistry (Topics in Current Chemistry;
electron donating ability of amines.
Wirth, T., Ed.; Springer: Berlin, 2003; Vol. 224. (b) Zhdankin, V. V.
Hypervalent Iodine Chemistry; Wiley: Chichester, 2014. (c) Romero, R.
(17) The reaction of the nonprotected spiro indole did not give the
rearranged product.
D
Org. Lett. XXXX, XXX, XXX−XXX