MALEKI ET AL.
9 of 10
TABLE 8 Comparison of n‐Fe3O4–MDI‐Gn with some of the reportedcatalysts for tandem Knoevenagel‐Michael‐cyclocondensation
Entry
Catalyst
Reaction condition
CH3CN/reflux
Solvent‐free/70 °C
Solvent‐free/100 °C
Solvent‐free/95 °C
EtOH/r.t.
Time(min)
Yield(%)
87
Ref
[24]
[25]
[26]
[26]
[27]
[28]
[29]
1
2
3
4
5
6
7
8
n‐Pd
n‐TiO2
300
35
92
n‐Fe3O4
n‐Fe3O4@SiO2@TiO2
n‐SiO2
15
81
20
93
25
94
n‐PbO
n‐ZnO
Grinding/r.t.
15
83
EtOH:H2O/r.t.
210
10
86
n‐Fe3O4–MDI‐Gn
Ethanol/water, RT
93
This work
37, 69; c) F. Osanlou, F. Nemati, S. Sabaqian, Res. Chem.
Intermed. 2016; d) F. Nemati, M. M. Heravi, R. Saeedi Rad, Chin.
J. Catal. 2012, 33; 1825.
exposure to an external magnet. The remaining nanocatalyst
was washed with EtOH, air‐dried, and used directly for the
next reaction without further purification to remove residual
products. The recycled catalyst was used for up to seven for
Knoevenagel condensation and six for Knoevenagel‐
Michael‐cyclocondensation without significant loss of cata-
lytic activity (Tables 6, 7).
In order to compare the efficiency of the prepared
nanocatalyst with other reported catalysts as well as to exhibit
the merit of the present work, our results are compared with
some other previously reported studies in Table 8.
[7] a) C. W. Lim, I. S. Lee, Nano Today 2010, 5, 412; b) Y.‐S. Li, J. S.
Church, A. L. Woodhead, J. Magn. Magn. Mater. 2012, 324, 1543;
c) A. Gupta, R. Jamatia, A. K. Pal, New J. Chem. 2015, 39, 5636.
[8] a) M. Gholinejad, M. Razeghi, A. Ghaderi, P. Biji, Catal. Sci.
Technol. 2016, 6, 3117; b) R. K. Sharma, S. Dutta, S. Sharma, R.
Zboril, R. S. Varma, M. B. Gawande, Green Chem. 2016, 18, 3184;
c) J. Safaei Ghomi, S. Zahedi, Ultrason. Sonochem. 2017, 34, 916.
[9] A. Ying, S. Liu, Z. Li, G. Chen, J. Yang, H. Yan, S. Xu, Adv. Synth.
Catal. 2016, 358, 2116.
[10] R. G. S. Berlinck, S. Romminger, Nat. Prod. Rep. 2016, 33, 456.
ACKNOWLEDGEMENTS
[11] a) Y. R. Su, S. H. Yu, A. C. Chao, J. Y. Wu, Y. F. Lin, K. Y. Lu, F.
L. Mi, Colloids Surf. Physicochem. Eng. Aspects 2016, 494, 9; b)
Y. Kudo, T. Yasumoto, D. Mebs, Y. Cho, K. Konoki, M. Yotsu‐
Yamashita, Angew. Chem. Int. Ed. 2016, 55, 8728.
We are grateful to the University of Semnan Research Coun-
cil for financial support of this work.
[12] a) A. Puglisi, M. Benaglia, V. Chiroli, Green Chem. 2013, 15,
1790; b) M.‐O. Simon, C.‐J. Li, Chem. Soc. Rev. 2012, 41, 1415;
c) E. Dezfoolinezhad, K. Ghodrati, R. Badri, New J. Chem. 2016,
40, 4575; d) R. B. N. Baig, R. S. Varma, Chem. Commun. 2013,
49, 752; e) R. B. Nasir Baig, R. S. Varma, Green Chem. 2013,
15, 398.
REFERENCES
[1] a) M. B. Gawande, P. S. Branco, R. S. Varma, Chem. Soc. Rev.
2013, 42, 3371; b) P. Barbaro, F. Liguori, N. Linares, C. M.
Marrodan, Eur. J. Inorg. Chem. 2012, 2012, 3807.
[2] a) G. Kaupp, M. Reza Naimi‐Jamal, J. Schmeyers, Tetrahedron
2003, 59, 3753; b) M. Seifi, H. Sheibani, Catal. Lett. 2008, 126,
275.
[13] a) H. Alinezhad, M. Tajbakhsh, N. Ghobadi, Res. Chem. Intermed.
2015, 41, 9979; b) A. Maleki, Tetrahedron Lett. 2013, 54, 2055; c)
B. Wu, M. Santra, N. Yoshikai, Angew. Chem. 2014, 126, 7673.
[3] a) H. Zhang, R. Qi, D. G. Evans, X. Duan, J. Solid State Chem.
2004, 177, 772; b) Y. Zhang, Y. Zhao, C. Xia, J. Mol. Catal. A:
Chem. 2009, 306, 107; c) E. Tabrizian, A. Amoozadeh, RSC Adv.
2016, 6, 96606.
[14] A. Ying, S. Liu, Y. Ni, F. Qiu, S. Xu, W. Tang, Catal. Sci. Technol.
2014, 4, 2115.
[15] Y.‐k. Sun, M. Ma, Y. Zhang, N. Gu, Colloids Surf. Physicochem.
Eng. Aspects 2004, 245, 15.
[4] a) L. Foppa, J. Dupont, C. W. Scheeren, RSC Adv. 2014, 4, 16583;
b) J. Gao, H. Gu, B. Xu, Acc. Chem. Res. 2009, 42, 1097.
[16] H. R. Shaterian, M. Arman, F. Rigi, J. Mol. Liq. 2011, 158, 145.
[17] M. I. H. M. M. H. Bhuiyan, M. Ashraful Alam, M. M. Mahmud,
[5] a) S. Igder, A. R. Kiasat, M. R. Shushizadeh, Res. Chem. Intermed.
2015, 41, 7227; b) A. R. Kiasat, S. Nazari, J. Mol. Catal. A: Chem.
2012, 365, 80; c) M. B. Gawande, A. Velhinho, I. D. Nogueira, C.
A. A. Ghumman, O. M. N. D. Teodoro, P. S. Branco, RSC Adv.
2012, 2, 6144; d) L. A. Mercante, W. W. M. Melo, M. Granada,
H. E. Troiani, W. A. A. Macedo, J. D. Ardison, M. G. F. Vaz, M.
A. Novak, J. Magn. Magn. Mater. 2012, 324, 3029; e) N. S.
Chaudhari, S. S. Warule, S. Muduli, B. B. Kale, S. Jouen, B. Lefez,
B. Hannoyer, S. B. Ogale, Dalton Trans. 2011, 40, 8003.
Chem. J. 2012, 2, 31.
[18] Z. Ren, W. Cao, W. Tong, Synth. Commun. 2002, 32, 3475.
[19] N. M. Abd El‐Rahman, A. A. El‐Kateb, M. F. Mady, Synth.
Commun. 2007, 37, 3961.
[20] X. C. Yang, H. Jiang, W. Ye, Synth. Commun. 2012, 42, 309.
[21] R. M. Kumbhare, M. Sridhar, Catal. Commun. 2008, 9, 403.
[22] R. M. H. A. Weinbergerr, Can. J. Chem. 1965, 43.
[6] a) A. Rostami, B. Atashkar, D. Moradi, Appl. Catal., A 2013, 467,
7; b) A. Rostami, B. Atashkar, H. Gholami, Catal. Commun. 2013,
[23] R. Malakooti, H. Mahmoudi, R. Hosseinabadi, S. Petrov, A.
Migliori, RSC Adv. 2013, 3, 22353.