Page 9 of 10
Journal of the American Chemical Society
Chas, M.; Allain, M.; Goeb, S.; Sallé, M. A Metal-Directed
(18) Reiné, P.; Ortuño, A. M.; Resa, S.; Álvarez de Cienfuegos,
L.; Blanco, V.; Ruedas-Rama, M. J.; Mazzeo, G.; Abbate, S.;
Lucotti, A.; Tommasini, M.; Guisán-Ceinos, S.; Ribagorda,
M.; Campaña, A. G.; Mota, A.; Longhi, G.; Miguel, D.;
Cuerva, J. M. OFF/ON Switching of Circularly Polarized Lu-
minescence by Oxophilic Interaction of Homochiral Sulfox-
ide-Containing o-OPEs with Metal Cations. Chem. Commun.
2018, 54, 13985-13988.
(19) The absorption and 1H NMR spectra of the individual homo-
assemblies (Figure 1b,e, 4b,c, 4e,f) were obtained by addition
of 0.50 equiv. of Zn2+ into 9,10LD (or 9,10LD′(S)) alone or into
1,5LA (or 1,5LA′(S)) alone.
1
2
3
4
5
6
7
8
9
10
Self-Assembled Electroactive Cage with Bis(pyr-
rolo)tetrathiafulvalene (BPTTF) Side Walls. J. Am. Chem.
Soc. 2012, 134, 11968-11970. (c) Freye, S.; Hey, J.; Torras-
Galán, A.; Stalke, D.; Herbst-Irmer, R.; John, M.; Clever, G.
H. Allosteric Binding of Halide Anions by a New Dimeric
Interpenetrated Coordination Cage. Angew. Chem., Int. Ed.
2012, 51, 2191-2194. (d) Croué, V.; Goeb, S.; Szalóki, G.;
Allain, M.; Salle, M. Reversible Guest Uptake/Release by
Redox-Controlled Assembly/ Disassembly of a Coordination
Cage. Angew. Chem., Int. Ed. 2016, 55, 1746-1750.
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
(14) For the supramolecular system we term "metal-ion clipping",
see: (a) Imai, Y.; Nakano, Y.; Kawai, T.; Yuasa, J. A Smart
Sensing Method for Object Identification Using Circularly
Polarized Luminescence from Coordination-Driven Self-As-
sembly. Angew. Chem., Int. Ed. 2018, 57, 8973-8978. (b)
Imai, Y.; Yuasa, J. Supramolecular Chirality Transformation
Driven by Monodentate Ligand Binding to a Coordinatively
Unsaturated Self-Assembly Based on C3-Symmetric Ligands.
Chem. Sci. 2019, 10, 4236-4245. (c) Imai, Y.; Yuasa, J. Off–
Off–On Chiroptical Property Switching of a Pyrene Lumino-
phore by Stepwise Helicate Formation. Chem. Commun.
2019, 55, 4095-4098. (d) Nonomura, K.; Yuasa, J. Compet-
ing Allosteric Mechanisms for Coordination-Directed Con-
formational Changes of Chiral Stacking Structures with Aro-
matic Rings. Inorg. Chem. 2019, 58, 6474-6484. (e) Inukai,
N.; Kawai, T.; Yuasa, J. One-Step Versus Multistep Equilib-
rium of Carbazole-Bridged Dinuclear Zinc(II) Complex For-
mation: Metal-Assisted p-Association and -Dissociation Pro-
cesses. Chem. Eur. J. 2014, 20, 15159-15168. (f) Imai, Y.;
Kawai, T.; Yuasa, J. Metal Ion Clip: Fine-Tuning Aromatic
Stacking Interactions in the Multistep Formation of Carba-
zole-Bridged Zinc(II) Complexes. Chem. Commun. 2015, 51,
10103-10106. (g) Ogata, D.; Yuasa, J. Dynamic Open Coor-
dination Cage from Nonsymmetrical Imidazole–Pyridine Di-
topic Ligands for Turn-On/Off Anion Binding. Angew.
Chem., Int. Ed. 2019, 58, 18424-18428.
(15) (a) Smithrud, D. B.; Diederich, F. Strength of Molecular
Complexation of Apolar Solutes in Water and in Organic Sol-
vents Is Predictable by Linear Free Energy Relationships: A
General Model for Solvation Effects on Apolar Binding. J.
Am. Chem. Soc. 1990, 112, 339-343. (b) Chen, Z.; Fimmela,
B.; Würthner, F. Solvent and Substituent Effects on Aggre-
gation Constants of Perylene Bisimide π-Stacks – a Linear
Free Energy Relationship Analysis. Org. Biomol. Chem.
2012, 10, 5845-5855.
(16) Notably, such two-step spectral changes were also observed
in the titration in a 1:2 mixture of 9,10LD′(S) and 1,5LA′(S) with
Zn2+ (Supporting Information Figure S3). Hence the initial
molar ratio between the donor and acceptor had no effect on
whether complementary or self-complementary takes place.
(17) 1,5LA′(S) first formed the assembly with Zn2+ prior to forming
the Zn2+-assembly with 9,10LD′(S) (Scheme 2b). The higher af-
finity of 1,5LA′(S) than that of 9,10LD′(S) for Zn2+ might be at-
tributed to the positions of the imidazole side arm in 1,5LA′(S),
which provides appropriate coordination vectors for building
the L4Zn2-assembly in a tetrahedral coordination.
(20) The mass peak at m/z
= 1794.13 corresponds to
{(9,10LD)(1,5LA)2(Zn)2(OSO2CF3)3 + H}+, where one of the
two the anthraquinone molecules could undergo one-electron
reduction (1,5LA + e– → 1,5LA•–) during the ionization process.
(21) Closed-type complexes might offer another possible geome-
try for the L4Zn2 structure; however, such a coordination ge-
ometry causes strain in the ditopic ligands. A DFT study in-
dicated that the proposed open-type L4Zn2 structures (insets
of Figure 4b and c) are 91.8 and 59.9 kcal/mol lower in en-
ergy than those of the closed-type complexes (Supporting In-
formation Figure S17).
(22) For NMR line broadening owing to restricted motion of aro-
matic rings on the NMR timescale caused by strong polyaro-
matic interactions, see Nishioka, T.; Kuroda, K.; Akita, M.;
Yoshizawa, M. A Polyaromatic Gemini Amphiphile That As-
sembles into a Well-Defined Aromatic Micelle with Higher
Stability and Host Functions. Angew. Chem., Int. Ed. 2019,
58, 6579-6583.
(23) NMR line broadening and signal merging have also been re-
ported in other supramolecular CT systems; see: Chakraborty,
S.; Ray, D.; Aswal, V. K.; Ghosh, S. Multi-Stimuli-Respon-
sive Directional Assembly of an Amphiphilic Donor–Accep-
tor Alternating Supramolecular Copolymer. Chem. Eur. J.
2018, 24, 16379-16387.
(24) The titration analysis in Figure 1a suggests that the formation
of the A-D-A assembly [(9,10LD)( 1,5LA)2–(Zn2+)2] was almost
stoichiometric. The non-linear data fitting analysis (Support-
ing Information Figure S26) indicates that a stoichiometric
binding occurs with an association constant greater than KADA
~1033 M–4 (corresponding to –GADA0 ~45 kcal/mol). The large
0
GADA value might be attributed to zinc-imidazole coordina-
tion bonds associated with the A-D-A CT interactions inside
the assembly.
(25) (a) Liu, M.; Zhang, L.; Wang, T. Supramolecular Chirality in
Self-Assembled Systems. Chem. Rev. 2015, 115, 7304–7397.
(b) Jędrzejewska, H.; Szumna, A. Making a Right or Left
Choice: Chiral Self-Sorting as a Tool for the Formation of
Discrete Complex Structures. Chem. Rev. 2017, 117, 4863–
4899. (c) Greenaway, R. L.; Santolini, V.; Pulido, A.; Little,
M. A.; Alston, B. M.; Briggs, M. E.; Day, G. M.; Cooper, A.
I.; Jelfs, K. E. From Concept to Crystals via Prediction:
Multi-Component Organic Cage Pots by Social Self-Sorting.
Angew. Chem., Int. Ed. 2019, 58, 16275–16281. (d) Safont-
Sempere, M. M.; Fernández, G.; Würthner, F. Self-Sorting
Phenomena in Complex Supramolecular Systems. Chem. Rev.
2011, 111, 5784–5814.
9
ACS Paragon Plus Environment