Antioxidant Activity of Phenolic Acids
J. Agric. Food Chem., Vol. 54, No. 8, 2006 2937
(17) Lucarini, M.; Pedrielli, P.; Pedulli, G. F.; Cabiddu, S.; Fattuoni,
C. Bond dissociation energies of O-H bonds in substituted
phenols by equilibration studies. J. Org. Chem. 1996, 61, 9259-
9263.
(18) Brigati, G.; Lucarini, M.; Mugnaini, V.; Pedulli, G. F. Deter-
mination of the substituent effect on the O-H bond dissociation
enthalpies of phenolic antioxidants by the EPR radical equilibra-
tion technique. J. Org. Chem. 2002, 67, 4828-4832.
(19) Mulder, P.; Korth, H.-G.; Pratt, D. A.; DiLabio, G. A.;
Valgimigli, L.; Pedulli, G. F.; Ingold, K. U. Critical re-evaluation
of the O-H bond dissociation enthalpy in phenol. J. Phys. Chem.
A 2005, 109, 2647-2655.
factors responsible for the protective activity of antioxidants
against peroxyl radical attack in biological systems.
ACKNOWLEDGMENT
We thank Dr. Veronica Mugnaini for technical assistance and
an anonymous referee for helpful suggestions.
LITERATURE CITED
(1) Shahidi, F.; Naczk, M. Food Phenolics. Sources, Chemistry,
Effects, Applications; Technomic: Lancaster, PA, 1995.
(2) Owen, R. W.; Giacosa, A.; Hull, W. E.; Haubner, R.; Spiegel-
halder, B.; Bartsch, H. The antioxidant/anticancer potential of
phenolic compounds isolated from olive oil. Eur. J. Cancer 2000,
36, 1235-1247.
(3) Halliwell, B.; Gutteridge J. M. C. Free Radicals in Biology and
Medicine, 3rd ed.; Oxford University Press: New York, 1999.
(4) Ivanov, V.; Carr, A. C.; Frei, B. Red wine antioxidants bind to
human lipoproteins and protect them from metal ion-dependent
and -independent oxidation. J. Agric. Food Chem. 2001, 49,
4442-4449.
(20) Howard, J. A. In Free Radicals; Kochi, J. K., Ed.; Wiley: New
York, 1973; Vol. 2, Chapter 12.
(21) Amorati, R.; Ferroni, F.; Lucarini, M.; Pedulli, G. F.; Valgimigli,
L. A quantitative approach to the recycling of R-tocopherol by
coantioxidants. J. Org. Chem. 2002, 67, 9295-9303.
(22) Chatgilialoglu, C.; Timokhin, V. I.; Zaborovskyi, A. B.; Lutsyk,
D. S.; Prystansy, R. E. Rate constants for the reaction of
cumylperoxyl radicals with Bu3SnH and (TMS)3SiH. Chem.
Commun. 1999, 405-406.
(23) Foti, M. C.; Barclay, L. R. C.; Ingold, K. U. The role of hydrogen
bonding on the H-atom donating abilities of catechols and
naphthalene diols and on a previously overlooked aspect of their
infrared spectra. J. Am. Chem. Soc. 2002, 124, 12881-12888.
(24) Lucarini, M.; Mugnaini, V.; Pedulli, G. F. Bond dissociation
enthalpies of polyphenols: the importance of cooperative effects.
J. Org. Chem. 2002, 67, 928-931.
(25) Lucarini, M.; Pedulli, G. F.; Guerra, M. A critical evaluation of
the factors determining the effect of intramolecular hydrogen
bonding on the O-H bond dissociation enthalpy of catechol and
of flavonoid antioxidants Chem. Eur. J. 2004, 10, 933-939.
(26) Burton, G. W.; Doba, T.; Gabe, E. J.; Hughes, L.; Lee, F. L.;
Prasad, L.; Ingold, K. U. Autoxidation of biological molecules.
4. Maximizing the antioxidant activity of phenols. J. Am. Chem.
Soc. 1985, 107, 7053-7065.
(27) Patel, V. M.; Joshi, J. D. Equilibrium study on the complex for-
mation of europium-, terbium-, dispropsium-, and thulium(III)
with some oxyacids, thioacids, and phenols. J. Indian Chem.
Soc. 1998, 75, 100-101.
(5) Rice-Evans, C. A.; Miller, N. J.; Paganga, G. Structure-
antioxidant activity relationships of flavonoids and phenolic
acids. Free Radical Biol. Med. 1996, 20, 933-956.
(6) Nardini, M.; D’Aquino, M.; Tomassi, G.; Gentili, V.; Di Felice,
M.; Scaccini, C. Inhibition of human low-density lipoprotein
oxidation by caffeic acid and other hydroxycinnamic acid
derivatives. Free Radical Biol. Med. 1995, 19, 541-552.
(7) Laranjinha, J. A.; Almeida, L. M.; Madeira, V. M. Reactivity
of dietary phenolic acids with peroxyl radicals: antioxidant
activity upon low-density lipoprotein peroxidation. Biochem.
Pharmacol. 1994, 48, 487-494.
(8) Raneva, V.; Shimasaki, H.; Ishida, Y.; Ueta, N.; Niki, E.
Antioxidative activity of 3,4-dihydroxyphenylacetic acid and
caffeic acid in rat plasma. Lipids 2001, 36, 1111-1116.
(9) Foley, S.; Navaratnam, S.; McGarvey D. J.; Land, E. J.; Truscott,
T. G.; Rice-Evans, C. A. Singlet oxygen quenching and the redox
properties of hydroxycinnamic acids. Free Radical Biol. Med.
1999, 26, 1202-1208.
(10) Cuvelier, M.-E.; Richard, H.; Berset, C. Comparison of the
antioxidative activity of some acid-phenols: structure-activity
relationship. Biosci., Biotechnol., Biochem. 1992, 56, 324-325.
(11) Chen, J. H.; Ho, C.-T. Antioxidant activities of caffeic acid and
its related hydroxycinnamic acid compounds. J. Agric. Food
Chem. 1997, 45, 2374-2378.
(12) Moon, J.-A.; Terao, J. Antioxidant activity of caffeic acid and
dihydrocaffeic acid in lard and human low-density lipoprotein.
J. Agric. Food Chem. 1998, 46, 5062-5065.
(28) Kennedy, J. A.; Munro, M. H. G.; Powell, H. K. J.; Porter, L.
J.; Foo, L. Y. The protonation reaction of catechin, epicatechin,
and related compounds. Aust. J. Chem. 1984, 37, 885-892.
(29) Steenken, S.; Neta, P. One-electron redox potentials of phenols.
Hydroxy and aminophenols and related compounds of biological
interest. J. Phys. Chem. 1982, 86, 3661-3667.
(30) Litwinienko, G.; Ingold, K. U. Abnormal solvent effects on
hydrogen atom abstraction. 1. The reaction of phenols with 2,2-
diphenyl-1-picrylhydrazyl (dpph) in alcohols. J. Org. Chem.
2003, 68, 3433-3438.
(31) Foti, M. C.; Daquino, C.; Geraci, C. Electron-transfer reaction
of cinnamic acids and their methyl esters with the DPPH• radical
in alcoholic solutions J. Org. Chem. 2004, 69, 2309-2314.
(32) Roginsky, V. Chain-breaking antioxidant activity of natural
polyphenols as determined during the chain oxidation of methyl
linoleate in Triton X-100 micelles. Arch. Biochem. Biophys.
2003, 414, 261-270.
(33) Hotta, H.; Sakamoto, H.; Nagano, S.; Osakai, T.; Tsujino, Y.
Unusually large numbers of electrons for the oxidation of
polyphenolic antioxidants. Biochim. Biophys. Acta 2001, 1526,
159-167.
(13) Silva, F. A. M.; Borges, F.; Guimara˜es, C.; Lima, J. L. F. C.;
Matos, C.; Reis, S. Phenolic acids and derivatives: studies on
the relationship among structure, radical scavenging activity, and
physicochemical parameters. J. Agric. Food Chem. 2000, 48,
2122-2126.
(14) (a) Mukai, K.; Oka, W.; Watanabe, K.; Egawa, Y.; Nagaoka,
S.; Terao, J. Kinetic study of free-radical-scavenging action of
flavonoids in homogeneous and aqueous Triton X-100 micellar
solutions. J. Phys. Chem. A 1997, 101, 3746-3753. (b) Mukai,
K.; Mitani, S.; Ohara, K.; Nagaoka, S. I. Structure-activity
relationship of the tocopherol regeneration reaction by catechins.
Free Radical Biol. Med. 2005, 38, 1243-1256.
(15) Borges, M. F. M.; Pinto, M. M. M. Separation of the diastereo-
isomers of ethyl-esters of caffeic, ferulic and isoferulic acids by
thin-layer and high-performance liquid chromatography. J. Liq.
Chromatogr. 1994, 17, 1125-1139.
(16) Amorati, R.; Pedulli, G. F.; Valgimigli, L.; Attanasi, O. A.;
Filippone, P.; Fiorucci, C.; Saladino, R. Absolute rate constant
for the reaction of peroxyl radicals with cardanol derivatives. J.
Chem. Soc., Perkin Trans. 2 2001, 2142-2146.
Received for review December 16, 2005. Revised manuscript received
February 21, 2006. Accepted February 21, 2006. Financial support from
MIUR and the University of Bologna (Research Project “Free Radical
Processes in Chemistry and Biology: Fundamental Aspects and
Applications in Environment and Material Sciences”) is gratefully
acknowledged.
JF053159+