RSC Advances
Paper
9 N. Dimitratos, F. Porta, L. Prati and A. Villa, Catal. Lett., 2005,
99, 181–185.
Conclusion
´
´
´ ´
10 T. Benko, A. Beck, K. Frey, D. F. Sranko, O. Geszti, G. Safran,
The understanding of the structure and composition of the Au–
Pd bimetallic catalysts is key for designing more active catalysts
and to nd robust structure–activity relationships. However, the
exact characterization of these samples is oen difficult due to
interference of the support (metal support interactions) or low
metal loadings. For glucose oxidation, the activity of the Au–Pd
nanoparticles depends on the composition: gold-rich nano-
particles presented a lower activity when compared with the
palladium-rich nanoparticles, but a maximum of activity (at
60 C and 80 C) was reached with 0.5wt%Au0.5wt%Pd bime-
tallic composition. It could be rstly concluded that the gold-
rich samples continue in their alloyed forms with a small
increase in surface Pd content, as deduced from the XPS data.
Secondly, the Pd-rich samples present metal segregation (Pd
rich surface) with an increasing presence of palladium oxide.
Surface Pd helps in the adsorption of glucose.13
´
B. Maroti and Z. Schay, Appl. Catal., A, 2014, 479, 103–111.
11 T. Haynes, V. Dubois and S. Hermans, Appl. Catal., A, 2017,
542, 47–54.
12 R. Wojcieszak, C. P. Ferraz, J. Sha, S. Houda, L. M. Rossi and
S. Paul, Catalysts, 2017, 7, 352.
13 T. A. G. Silva, C. P. Ferraz, R. V. Gonçalves, E. Teixeira-Neto,
R. Wojcieszak and L. M. Rossi, ChemCatChem, 2019, 11, 1–8.
14 M. Comotti, C. D. Pina and M. Rossi, J. Mol. Catal. A: Chem.,
2006, 251, 89–92.
15 H. Zhang and N. Toshima, Appl. Catal., A, 2011, 400, 9–13.
16 Y. Cao, X. Liu, S. Iqbal, P. J. Miedziak, J. K. Edwards,
R. D. Armstrong, D. J. Morgan, J. Wang and
G. J. Hutchings, Catal. Sci. Technol., 2016, 6, 107–117.
17 T. Ishida, N. Kinoshita, H. Okatsu, T. Akita, T. Takei and
M. Haruta, Angew. Chem., Int. Ed., 2008, 47, 9265–9268.
ꢀ
ꢀ
´
´
18 D. Ferrer, A. Torres-Castro, X. Gao, S. Sepulveda-Guzman,
In case of Au–Cu/TiO2 samples the synergetic effect was also
observed with the highest activity observed for 0.5%Cu0.5%Au/
TiO2 sample at 60 ꢀC. Generally, Au0 is believed to be the active
site while, Cu0 plays an important role in activation of oxygen
molecules. In our case, four different Cu species were detected.
For all Au–Cu bimetallic catalysts the Cu was mostly in Cu0/Cu+
state. A linear correlation between catalytic activity and CuOH
and Cu2+ species content was observed which strongly indicated
that CuOH species are active sites in the glucose oxidation
reaction.
´
´
´
U. Ortiz-Mendez and M. Jose-Yacaman, Nano Lett., 2007, 7,
1701–1705.
19 R. Mu, Q. Fu, H. Xu, H. Zhang, Y. Huang, Z. Jiang, S. Zhang,
D. Tan and X. Bao, J. Am. Chem. Soc., 2011, 133, 1978–1986.
20 K. Heidkamp, M. Aytemir, K.-D. Vorlop and U. Pruße, Catal.
¨
Sci. Technol., 2013, 3, 2984–2992.
21 S. Hermans, A. Deffernez and M. Devillers, Catal. Today,
2010, 157, 77–82.
22 X. Zhang, K. Wilson and A. F. Lee, Chem. Rev., 2016, 116,
12328–12368.
23 A. Villa, D. Wang, G. M. Veith, F. Vindigni and L. Prati, Catal.
Sci. Technol., 2013, 3, 3036–3041.
Conflicts of interest
24 Y. Wang and H. Gao, J. Phys. Chem. B, 2017, 121, 2132–2141.
25 R. Wojcieszak, I. M. Cuccovia, M. A. Silva and L. M. Rossi, J.
Mol. Catal. A: Chem., 2016, 422, 35–42.
26 Y. Cao, S. Iqbal, P. J. Miedziak, D. R. Jones, D. J. Morgan,
X. Liu, J. Wang and G. J. Hutchings, J. Chem. Technol.
Biotechnol., 2017, 92, 2246–2253.
There are no conicts of interest to declare.
Acknowledgements
We gratefully acknowledge Dr Ahmed Addad for providing with
HAADF images and Dr Pardis Simon for the XPS analysis. We
would like to thank the China Scholarship Council (CSC,
201504490079) for nancial support. We also thank the REAL-
CAT platform for providing with reaction and analysis
equipment.
´
27 M. Zielinski, R. Wojcieszak, S. Monteverdi, M. Mercy and
M. M. Bettahar, Catal. Commun., 2005, 6, 777–783.
28 A. R. Wilson, K. Sun, M. Chi, R. M. White, J. M. LeBeau,
H. H. Lamb and B. J. Wiley, J. Phys. Chem. C, 2013, 117,
17557–17566.
29 M. P. Casaletto, A. Longo, A. Martorana, A. Prestianni and
A. M. Venezia, Surf. Interface Anal., 2006, 38, 215–218.
References
1 M. Haruta, T. Kobayashi, H. Sano and N. Yamada, Chem. 30 J. F. Moulder, W. F. Stickle, P. E. Sobol and K. D. Bomben,
Lett., 1987, 405–408.
Handbook of X-ray Photoelectron Spectroscopy, Perkin Elmer,
2 G. J. Hutchings, J. Catal., 1985, 96, 292–295.
Eden Prairie, MN, 1992.
´
3 T. A. G. Silva, E. Teixeira-Neto, N. Lopez and L. M. Rossi, Sci. 31 E. D. Park and J. S. Lee, J. Catal., 1999, 186, 1–11.
Rep., 2014, 4, 5766.
32 J. P. Mathew and M. Srinivasan, Eur. Polym. J., 1995, 31, 835–
4 L. Prati and A. Villa, Catalysts, 2012, 2, 24–37.
839.
´
´
´
5 M. Comotti, C. Della Pina, E. Falletta and M. Rossi, Adv. 33 ¸S. Nea¸tu, J. A. Macia-Agullo, P. Concepcion and H. Garcia, J.
Synth. Catal., 2006, 348, 313–316.
Am. Chem. Soc., 2014, 136, 15969–15976.
A. Savara, Faraday Discuss., 2018, 208, 395–407.
7 G. J. Hutchings, Catal. Today, 2005, 100, 55–61.
8 C. L. Bianchi, P. Canton, N. Dimitratos, F. Porta and L. Prati,
Catal. Today, 2005, 102–103, 203–212.
accessed July 15, 2019.
¨
35 I. Onal, D. Duzenli, A. Seubsai, M. Kahn, E. Seker and
S. Senkan, Top. Catal., 2010, 53, 92–99.
29900 | RSC Adv., 2019, 9, 29888–29901
This journal is © The Royal Society of Chemistry 2019