386 Biochemistry, Vol. 50, No. 3, 2011
Adediran et al.
FIGURE 7: Endopeptidase activity of the R39 DD-peptidase. Circles represent N-acetylglucosamine, squares N-acetylmuramic acid, and vertical
lines peptide cross-links. When not cross-linked, the peptides have free side chain N- and C-termini, one of each per N-acetylmuramic acid. The
enzyme cleaves cross-links that have a free side chain N-terminus on the acyl side.
DD-peptidases (2), including E. coli PBP4, for example (20, 46).
Recently, Duez et al. have demonstrated endopeptidase activity
against a small peptidoglycan-mimetic peptide in another such
enzyme, Bacillus subtilis PBP 4a (47). An endopeptidase substrate
15, which is not susceptible to the carboxypeptidase or transpep-
9. Pratt, R. F. (2008) Substrate specificity of bacterial DD-peptidases
(penicillin-binding proteins). Cell. Mol. Life Sci. 65, 2138–2155.
10. Anderson, J. W., and Pratt, R. F. (2000) Dipeptide binding to the
extended active site of the Streptomyces R61 D-alanyl-D-alanine
peptidase: the path to a specific substrate. Biochemistry 39, 12200–
12209.
11. Anderson, J. W., Adediran, S. A., Charlier, P., Nguyen-Disteche, M.,
ꢁ
Frere, J.-M., Nicholas, R. A., and Pratt, R. F. (2003) On the substrate
tidase (here defined as beginning by
reactions, has been described.
D-alanine displacement)
ꢁ
specificity of bacterial DD-peptidases: evidence from two series of
peptidoglycan-mimetic peptides. Biochem. J. 373, 949–955.
12. McDonough, M. A., Anderson, J. W., Silvaggi, N. R., Pratt, R. F.,
Knox, J. R., and Kelly, J. A. (2002) Structures of two kinetic
intermediates reveal species specificity of penicillin-binding proteins.
J. Mol. Biol. 322, 111–122.
The pH dependence of kcat/Km for the carboxypeptidase
reactions of 7, 11, and 15 with the R39 DD-peptidase gave
evidence of complex proton-dissociation schemes and/or sticky
substrates or protons. The pH dependence of reaction of the
β-lactams 16 and 17 with the enzyme may also reflect complicated
phenomena since they do not mimic the pH dependence of the
peptide substrates (Table 4). The reactions of peptides and
β-lactams may occur at active sites with locally different protein
conformations. Finally, the solvent kinetic deuterium isotope
effects DV/K and DV indicate straightforward general acid/base
catalysis in both enzyme acylation and deacylation steps of
turnover.
13. Silvaggi, N. R., Anderson, J. W., Brinsmade, S. R., Pratt, R. F., and
Kelly, J. A. (2003) The crystal structure of a phosphonate-inhibited
D
-Ala-D-Ala peptidase reveals an analogue of a tetrahedral transition
state. Biochemistry 42, 1199–1208.
14. Silvaggi, N. R., Josephine, H. R., Kuzin, A. P., Nagarajan, R., Pratt,
R. F., and Kelly, J. A. (2005) Crystal structures of complexes between
the R61 DD-peptidase and peptidoglycan-mimetic β-lactams: a non-
covalent complex with a “perfect penicillin. J. Mol. Biol. 345, 521–
533.
15. Sauvage, E., Powell, A. J., Heilemann, J., Josephine, H. R., Charlier,
P., Davies, C., and Pratt, R. F. (2008) Crystal structures of complexes
of bacterial DD-peptidases with peptidoglycan-mimetic ligands; the
substrate specificity puzzle. J. Mol. Biol. 381, 383–393.
16. Dzhekieva, L., Rocaboy, M., Kerff, F., Charlier, P., Sauvage, E., and
Pratt, R. F. (2010) Crystal structure of a complex between the
Actinomadura R39 DD-peptidase and a peptidoglycan-mimetic bor-
onate inhibitor: interpretation of a transition state analogue in terms
of catalytic mechanism. Biochemistry 49, 6411–6419.
The methods employed above may, in principle, be applied to
any bacterial DD-peptidase in order to better define its substrate
specificity.
SUPPORTING INFORMATION AVAILABLE
Details of the syntheses of the substrates 6 and 7. This material
ꢁ
17. Ghuysen, J.-M., Frere, J.-M., Leyh-Bouille, M., Coyette, J., Dusart,
J., and Nguyen-Disteche, M. (1977) Use of model enzymes in
ꢁ
determination of the mode of action of penicillins and Δ3-cephalos-
porins. Annu. Rev. Biochem. 48, 73–101.
18. Zhao, G.-H., Duez, C., LePage, S., Forceille, C., Rhazi, N., Klein, D.,
REFERENCES
ꢁ
Ghuysen, J.-M., and Frere, J.-M. (1997) Site-directed mutagenesis of
the Actinomadura R39 DD-peptidase. Biochem. J. 327, 377–381.
1. Vollmer, W., and Bertsche, U. (2007) Murein (peptidoglycan) struc-
ture, architecture and biosynthesis in Escherichia coli. Biochim.
Biophys. Acta 1778, 1714–1734.
ꢁ
19. Sauvage, E., Herman, R., Petrella, S., Duez, C., Bouillenne, F., Frere,
2. Sauvage, E., Kerff, F., Terrak, M., Ayala, J. A., and Charlier, P.
(2008) The penicillin-binding proteins: structure and role in peptido-
glycan biosynthesis. FEMS Microbiol. Rev. 32, 234–258.
3. Waxman, D. J., and Strominger, J. L. (1983) Penicillin-binding
proteins and the mechanism of action of β-lactam antibiotics. Annu.
Rev. Biochem. 52, 825–869.
J.-M., and Charlier, P. (2005) Crystal structure of the Actinomadura
R39 DD-peptidase reveals new domains in penicillin-binding proteins.
J. Biol. Chem. 280, 31249–31256.
20. Granier, B., Duez, C., Lepange, S., Englebert, S., Dusart, J., Dideberg,
ꢁ
O., Van Beeumen, J., Frere, J.-M., and Ghuysen, J.-M. (1992) Primary
and predicted secondary structures of the Actinomadura R39 extra-
cellular DD-peptidase, a penicillin-binding protein (PBP) related to
Escherichia coli PBP4. Biochem. J. 282, 781–788.
4. Pratt, R. F. (2002) Functional evolution of the serine β-lactamase
active site. J. Chem. Soc. Perkin 2, 851–861.
5. Payne, D. J., Gwynn, M. N., Holmes, D. J., and Pompliano, D. L.
(2007) Drugs for bad bugs: confronting the challenges of antibacterial
discovery. Nat. Rev. Drug Discov. 6, 29–40.
6. Boucher, H. W., Talbot, G. H., Bradley, J. S., Edwards, T. E., Gilbert,
D., Rice, L. B., Scheld, M., Spellberg, B., and Bartlett, J. (2009) Bad
bugs, no drugs: no ESKAPE! An update from the Infectious Diseases
Society of America. Clin. Infect. Dis. 48, 1–12.
21. Nagarajan, R., and Pratt, R. F. (2004) Synthesis and evaluation of
new substrate analogues of Streptomyces R61 DD-peptidase: dissec-
tion of a specific ligand. J. Org. Chem. 69, 7472–7478.
22. Johnson, K. A., Simpson, Z. B., and Blom, T. (2009) A new computer
program for dynamic simulations and fitting of kinetic data. Anal.
Biochem. 387, 20–29.
23. Kuzmic, P. (1996) Program DYNAFIT for the analysis of enzyme
kinetic data: application to HIV proteinase. Anal. Biochem. 237, 260–
273.
7. Ghuysen, J.-M. (1991) Serine β-lactamases and penicillin-binding
proteins. Annu. Rev. Microbiol. 45, 37–67.
ꢀ
24. Frere, J.-M., Leyh-Bouille, M., Ghuysen, J.-M., Nieto, M., and
Perkins, H. R. (1976) Exocellular DD-carboxypeptidase-transpepti-
8. Goffin, C., and Ghuysen, J.-M. (1998) Multimodular penicillin-
binding proteins: an enigmatic family of orthologs and paralogs.
Microbiol. Mol. Biol. Rev. 62, 1079–1093.
dases from Streptomyces. Methods Enzymol. 45, 610–636.