8736
Z. Glasovac et al. / Tetrahedron Letters 46 (2005) 8733–8736
1
3
. (a) Gomez, L.; Gellibert, F.; Wagner, A.; Mioskowski, C.
Chem. Eur. J. 2000, 6, 4016–4020, and references cited
therein; (b) Nagasava, K.; Georgieva, A.; Takahashi, H.;
Nakata, T. Tetrahedron 2001, 57, 8959–8964; (c) Hayesen,
R.; Mirsky, V. M.; Heckman, K. D. Sens. Actuators, B
acetonitrile). H NMR (300 MHz, CD
3
CN, 25 ꢁC, TMS)
), 2.43 (s, 18H, CH ), 2.57 (t,
J(H,H) = 6 Hz, 6H, CH ), 3.46 (t, J(H,H) = 6 Hz, 6H,
d/ppm = 1.94 (m, 6H, CH
2
3
3
3
2
1
3
2 3
CH ), 9.00 (br s, 1H, NH); C NMR (75.5 MHz, CD CN,
25 ꢁC, TMS) d/ppm = 27.31, 40.44, 44.76, 55.29, 159.55.
1996, 32, 215–220.
13. Crystal data: Crystal dimensions: 0.4 mm · 0.3 mm ·
4
. For a recent review article see: Berlinck, R. G. S. Nat.
Prod. Rep. 1999, 16, 339–365; Greenhill, J. V.; Lue, P. In
Progress in Medicinal Chemistry; Ellis, G. P., Luscombe,
D. K., Eds.; Elsevier Science, 1993; Vol. 30, pp 206–327,
and references cited therein.
0.3 mm; crystal system: cubic; space group: P2 3; unit-
1
˚
3
cell dimensions (pm): a = 1382.5(1); volume (A ) = 2643;
calcd = 1.269; 2hmax = 30.11; radiation and wave-
length = Mo Ka/71.073, scan mode = omega scan; tem-
perature = 293 K; no. of measured and independent
reflections = 2558/1124; no. of reflections included in
refinement = all; Lorenzian polarization and absorption
correction = analytical; method of structure solution and
program = direct method in SHELXS-97;
refinement and program = SHELXL-97; no. of param-
eters = 110; the position of hydrogen atoms bound to the
N1, N1 and N1 atoms were located in the final stage of
the refinement, while H atoms bonded to the carbon
atoms were introduced at calculated positions and treated
q
5
. Raczynska, E. D.; Cyranski, M. K.; Gutowski, M.; Rak,
J.; Gal, J.-F.; Maria, P.-C.; Darowska, M.; Duczmal, K. J.
Phys. Org. Chem. 2003, 16, 91–106; Raczynska, E. D.;
Decouzon, M.; Gal, J.-F.; Maria, P.-C.; Gelbard, G.;
Vielfaure-Joly, F. J. Phys. Org. Chem. 2001, 14, 25–34;
Raczynska, E. D.; Gal, J.-F.; Maria, P.-C. J. Phys. Org.
Chem. 1994, 7, 725–733.
1
4a
method of
1
4a
0
00
6
. (a) Schuchardt, U.; Vargas, R. M.; Gelbard, G. J. Mol.
Catal. A: Chem. 1995, 99, 65–70; (b) Gelbard, G.;
Vielfaure-Joly, F. Tetrahedron Lett. 1998, 39, 2743–2746.
. (a) Schwesinger, R.; Hasenfratz, C.; Schlemper, H.; Waltz,
L.; Peters, E.-M.; Peters, K.; von Schnering, H. G. Angew.
Chem., Int. Ed. Engl. 1993, 32, 1361–1363; (b) Schwe-
singer, R. Angew. Chem., Int. Ed. Engl. 1987, 26, 1164–
as riding, with Uiso(H) values equal to 1.2U (C) and C–H
distances of 0.93 A. R = 0.0589 (F > 2r(F )); wR =
0.1345; refinement based on jF j; residual q (max/
eq
˚
2
2
7
2
min) = 0.251/À0.199; database: Cambridge Crystallo-
graphic Data Centre (CCDC, 12Union Road, Cambridge
CB21EZ, UK); CCDC reference number: 23 6453.
14. (a) Bruno, J.; Cole, J. C.; Edgington, P. R.; Kessler, M.
K.; Macrae, C. F.; McCabe, P.; Pearson, J.; Taylor, R.
Acta Crystallogr. 2002, B58, 389–397; (b) SHELX97
Programs for Crystal Structure Analysis (Release 97-2).
Sheldrick G. M. Instit u¨ t f u¨ r Anorganische Chemie der
Universit a¨ t, Tammanstrasse 4, D-3400 G o¨ ttingen, Ger-
many, 1998; (c) Farrugia, L. J. J. Appl. Cryst. 1999, 32,
837–838.
1165; (c) Schwesinger, R. Nachr. Chem. Tech. Lab. 1990,
38, 1214–1226; (d) Schwesinger, R. Chimia 1985, 39, 269.
8
9
. (a) Kaljurand, I.; Rodima, T.; Pihl, A.; M a¨ emets, V.;
Leito, I.; Koppel, I. A.; Mishima, M. J. Org. Chem. 2003,
68, 9988–9993; (b) Koppel, I. A.; Burk, P.; Koppel, I.;
Leito, I. J. Am. Chem. Soc. 2002, 124, 5594–5600; (c)
Rodima, T.; M a¨ emets, V.; Koppel, I. J. Chem. Soc.,
Perkin Trans. 1 2000, 2637–3644.
. Kova cˇ evi c´ , B.; Glasovac, Z.; Maksi c´ , Z. B. J. Phys. Org.
Chem. 2002, 15, 765–774. It should be noted that the
structures in Figures 1 and 2 were erroneously drawn as a
n-butyl- instead of n-propyl-derivatives.
3
15. Since the protonated form has C -symmetry the structural
parameters of only one of the chains participating in the
hydrogen bond with the guanidine moiety is given.
16. (a) Galezowski, W.; Jarczevski, A.; Stanczyk, M.; Brzezin-
ski, B.; Bartl, F.; Zundel, G. J. Chem. Soc., Faraday Trans.
1997, 93, 2515–2518; (b) Chen, J.; Willis, P. G.; Cammers,
A. Eur. J. Org. Chem. 2004, 171–178; (c) Andrade-Lopez,
N.; Ariza-Castolo, A.; V a´ squez-Olmos, A.; Behrens, N. B.;
Tlahuext, H. Heteroat. Chem. 1997, 8, 397–410.
17. Gung, B. W.; Zhu, Z.; Zou, D.; Everingham, B.; Oyeamalu,
A.; Crist, R. M.; Baudlier, J. J. Org. Chem. 1998, 63, 5750–
5761; Dado, G. P.; Gellman, S. H. J. Am. Chem. Soc. 1993,
115, 4228–4245; Gellman, S. H.; Dado, G. P.; Liang, G.-B.;
Adams, B. R. J. Am. Chem. Soc. 1991, 113, 1164–1173.
18. Bader, R. W. F. Atoms in Molecules. A Quantum Theory;
Oxford University Press: New York, 1997.
19. Becke, A. D. J. Chem. Phys. 1993, 98, 5648–5652; Lee, C.;
Yang, W.; Parr, R. G. Phys. Rev. B 1988, 37, 785–789;
Miehlich, B.; Savin, A.; Stoll, H.; Preuss, H. Chem. Phys.
Lett. 1989, 157, 200–206; Stephens, P. J.; Devlin, F. J.;
Chabalowski, C. F.; Frisch, M. J. J. Phys. Chem. 1994, 98,
11623–11627. Calculations were carried out using the
Gaussian 98 program package.
20. Grabowski, S. J. Chem. Phys. Lett. 2001, 338, 361–366.
21. (a) Wojtulewski, S.; Grabowski, S. J. Chem. Phys. Lett.
2003, 378, 388–394; (b) Grabowski, S. J. J. Phys. Chem. A
2001, 105, 10739–10746; (c) Sanz, P.; M o´ , O.; Y a´ n˜ ez, M.
Phys. Chem. Chem. Phys. 2003, 5, 2942–2947.
0
00
1
0. N,N ,N -Tris-(3-dimethylaminopropyl)-guanidine 1:
A
solution of carbodiimide 3 (7.33 g, 0.035 mol) and 3-
dimethylaminopropyl-1-amine (8.70 g, 0.070 mol) in
3
4
0.0 cm of dry THF was stirred under reflux for 24 h.
After cooling to room temperature, the solvent was
evaporated under vacuum (133 Pa, 1 mmHg) affording
guanidine 1 as a colourless viscous oil (10.75 g, 0.034 mol,
yield = 99%), which was used for preparation of hexaflu-
orophosphate salt without further purification. An
analytically pure sample was obtained by distillation of
À5
the crude product at 0.01 Pa (10 mmHg, bp = 132–
À4
1
36 ꢁC/2 · 10 mmHg). Selected data: IR (KBr)
À1
+
(m/cm = 1584, 1628; N@C(NH)
2
); HR-MS (MÀH )
1
exp.: m/z = 315.322185 (theor. m/z = 315.32307);
H
NMR (300 MHz, CDCl
3
m, 6H, CH ), 2.14 (s, 18H, CH ), 2.25–2.29 (t, J(H,H) =
3
3
, 2 5ꢁC, TMS) d/ppm: 1.59–1.68
3
(
2
6
2 2
Hz, 6H, CH ), 3.09–3.13 (t, J(H,H) = 6 Hz, 6H, CH ),
1
3
C NMR (75.5 MHz, CDCl , 2 5ꢁC, TMS) d/ppm: 27.5,
3
39.3, 45.2, 57.3, 159.2.
1
1. Raab, V.; Kipke, J.; Gschwind, R. M.; Sundermeyer, J.
Chem. Eur. J. 2002, 8, 1682–1693.
2. Guanidine 1 was converted to hexafluorophosphate salt
1
4 6
by mixing equimolar amounts of 1 and NH PF in dry
acetonitrile, followed by the filtration through a Celite pad
and evaporation of the filtrate. Guanidinium salt was
crystallized from acetonitrile by slow addition of diethyl
22. Koch, U.; Popelier, P. L. A. J. Phys. Chem. A 1995, 99,
9747–9754.
23. McKay, A. F.; Garmaise, D. L.; Baker, H. A.; Hawkins,
L. R.; Falta, V.; Gaudry, R.; Paris, G. Y. J. Med. Chem.
1963, 6, 587–595.
ether and cooling below 0 ꢁC yielding 75% of 1HÆPF
6
. A
crystal of 1HÆPF suitable for X-ray analysis was obtained
6
by slow diffusion of diethyl ether into a solution of
hexafluorophosphate salt in acetonitrile at room temper-
ature. The crystal incorporates one molecule of solvent in
the unit cell. Selected data: Mp = 111–112 ꢁC (from
24. Sheehan, J. C.; Cruickshank, P. A.; Boshart, G. L. J. Org.
Chem. 1961, 26, 2525–2528.