S. Akerboom et al. / Polyhedron 64 (2013) 106–109
109
Table 3
CB2 1EZ, UK; fax: (+44) 1223-336-033; or e-mail: deposit@ccdc.
cam.ac.uk.
Photophysical parameters for [Eu(L)3(NO3)3].
sexp (ms)
srad (ms)
Uint (%)
gsens (%)
Utot (%)
References
0.74
1.47
50
44
22
s
g
exp: experimental lifetime,
sens: sensitization efficiency, Utot: external photoluminescence quantum yield.
srad: radiative lifetime, Uint: intrinsic quantum yield,
[1] J.-C.G. Bünzli, S. Comby, A.-S. Chauvin, C.D.B. Vandevyver, J. Rare Earths 25
(2007) 257.
[2] R.E. Whan, G.A. Crosby, J. Mol. Spectrosc. 8 (1962) 315.
[3] S.I. Weissman, J. Chem. Phys. 10 (1942) 214.
[4] M. Turel, M. Cajlakovic, E. Austin, J.P. Dakin, G. Uray, A. Lobnik, Sens. Actuators,
B 131 (2008) 247.
[5] E.G. Moore, A.P.S. Samuel, K.N. Raymond, Acc. Chem. Res. 42 (2009) 542.
[6] C.C. Lin, R.-S. Liu, J. Phys. Chem. Lett. 2 (2011) 1268.
[7] S. Ye, F. Xiao, Y.X. Pan, Y.Y. Ma, Q.Y. Zhang, Mater. Sci. Eng., R 71 (2010) 1.
[8] K. Binnemans, Chem. Rev. 109 (2009) 4283.
[9] H. Yan, H. Wang, P. He, J. Shi, M. Gong, Inorg. Chem. Commun. 14 (2011) 1065.
[10] C.R. De Silva, J.R. Maeyer, R. Wang, G.S. Nichol, Z. Zheng, Inorg. Chim. Acta 360
(2007) 3543.
[11] V. Tsaryuk, K. Zhuravlev, V. Zolin, P. Gawryszewska, J. Legendziewicz, V.
Kudryashova, I. Pekareva, J. Photochem. Photobiol., A 177 (2006) 314.
[12] K. Liu, G. Jia, Y. Zheng, Y. Song, M. Yang, Y. Huang, L. Zhang, H. You, Inorg.
Chem. Commun. 12 (2009) 1246.
one of the nitrogen atoms prevents the bidentate coordination of
the phenanthroline molecule, thus hindering the normal mode of
coordination to the metal. Instead, the ligand binds to the lantha-
noid ion via its ketone moiety. While bèta-diketones have been
widely studied as sensitizing ligand for lanthanoid compounds, ke-
tones generally are considered poor ligands and thus seem to get
less attention. However, complexes of Eu(III) with Michler’s ke-
tone, benzophenone and azaxanthones have been studied and
are reported to exhibit bright photoluminescence, with quantum
yields in solution ranging from 9% to 24% [34–36].
[13] S. Tanase, P.M. Gallego, R. de Gelder, W.T. Fu, Inorg. Chim. Acta 360 (2007) 102.
[14] F.J. Steemers, W. Verboom, D.N. Reinhoudt, E.B. van der Tol, J.W. Verhoeven, J.
Am. Chem. Soc. 117 (1995) 9408.
4. Conclusion
[15] M.F. Belian, H.J. Batista, A.G.S. Bezerra, W.E. Silva, G.F. de Sá, S. Alves Jr., Chem.
Phys. 381 (2011) 29.
[16] A.G. Mirochnik, B.V. Bukvetskii, P.A. Zhikhareva, V.E. Karasev, Russ. J. Coord.
Chem. 27 (2001) 443.
[17] Z. Pan, G. Jia, C.-K. Duan, W.-Y. Wong, W.-T. Wong, P.A. Tanner, Eur. J. Inorg.
Chem. 2011 (2011) 637.
[18] S. Akerboom, J.J.M.H. Van den Elshout, I. Mutikainen, M.A. Siegler, W.T. Fu, E.
Bouwman, (2013), submitted for publication.
[19] J.F.J. Engbersen, A. Koudijs, M.H.A. Joosten, H.C. Vanderplas, J. Heterocycl.
Chem. 23 (1986) 989.
[20] E.J. Corey, A.L. Borror, T. Foglia, J. Org. Chem. 30 (1965) 288.
[21] L. Kolling, Phenanthroline-Comprising Complexes, in United States Patent &
Trademark Office, B.P. GmbH, Editor 2010, Basell Polyolefine GmbH, United
States.
[22] T. Kottke, D. Stalke, J. Appl. Crystallogr. 26 (1993) 615.
[23] Nonius, COLLECT, Nonius BV, Delft, The Netherlands, 2002.
[24] G.M. Sheldrick, SHELXS–97, Bruker AXS Inc., Madison, Wisconsin, 1997.
[25] G.M. Sheldrick, Acta Crystallogr., Sect. A: Found. Crystallogr. 64 (2008) 112.
[26] V. Tsaryuk, V. Zolin, L. Puntus, V. Savchenko, J. Legendziewicz, J. Sokolnicki, R.
Szostak, J. Alloys Compd. 300–301 (2000) 184.
1-Methyl-1,10-phenanthrolin-2(1H)-one has been synthesized
from phenanthroline and used as a ligand for the first time, using
Eu(III) as a central ion. The resulting complex is described by
[Eu(L)3(NO3)3] wherein the ligand is bound to Eu(III) in a mono-
dentate fashion via its carbonyl oxygen. The complex exhibits
strong photoluminescence characteristic of Eu(III) upon excitation
in the ligand-centered band using near UV radiation. The quantum
yield of this process is 22% indicating that the ligand is acting as a
moderately effective antenna for Eu(III) luminescence, despite its
unusual monodentate mode of binding to the metal ion. Further
investigations on the use of substituted 1,10-phenanthrolines as
a sensitizer have been performed and these results will be pub-
lished in a future paper [18].
[27] A.A. Schilt, R.C. Taylor, J. Inorg. Nucl. Chem. 9 (1959) 211.
[28] A.G. Orpen, L. Brammer, F.H. Allen, O. Kennard, D.G. Watson, R. Taylor, J. Chem.
Soc., Dalton Trans. (1989) S1.
Acknowledgment
[29] D. Lide (Ed.), CRC Handbook of Chemistry and Physics, 85th ed., CRC Handbook
of Chemistry and Physics, CRC Press, Boca Raton, 2005.
[30] W.T. Carnall, P.R. Fields, K. Rajnak, J. Chem. Phys. 49 (1968) 4412.
[31] R. Reisfeld, E. Zigansky, M. Gaft, Mol. Phys. 102 (2004) 1319.
[32] M.H.V. Werts, R.T.F. Jukes, J.W. Verhoeven, Phys. Chem. Chem. Phys. 4 (2002)
1542.
The authors are grateful to Prof. A. Meijerink (Utrecht Univer-
sity) for his help with the determination of the luminescence life-
time and quantum yield of [Eu(L)3(NO3)3].
[33] J.-C.G. Bünzli, Chem. Rev. 110 (2010) 2729.
[34] M.H.V. Werts, M.A. Duin, J.W. Hofstraat, J.W. Verhoeven, Chem. Commun.
(Cambridge, UK) (1999) 799.
Appendix A. Supplementary data
[35] A. Beeby, L.M. Bushby, D. Maffeo, J.A.G. Williams, J. Chem. Soc., Perkin Trans. 2
(2000) 1281.
[36] P. Atkinson, K.S. Findlay, F. Kielar, R. Pal, D. Parker, R.A. Poole, H. Puschmann,
S.L. Richardson, P.A. Stenson, A.L. Thompson, J.H. Yu, Org. Biomol. Chem. 4
(2006) 1707.
CCDC 918685 contains the supplementary crystallographic data
for [Eu(L)3(NO3)3]. These data can be obtained free of charge via
Cambridge Crystallographic Data Centre, 12 Union Road, Cambridge