C O M M U N I C A T I O N S
In our laboratories, oxidation of hexaphenylbenzene with sub-
stoichiometric oxidant (CuCl , PhI(O CCF ) , FeCl , or MoCl )
2 2 3 2 3 5
affords only 3 and unreacted 1 with nearly quantitative mass
balance. After separation of insoluble 3, HPLC/diode array UV
analysis of reaction mixtures revealed unreacted hexaphenylbenzene
containing small quantities of compounds exhibiting a UV spectrum
consistent with chlorinated 1, or, in one instance, a small quantity
of a compound exhibiting a UV spectrum consistent with a PAH.
These experiments are consistent with the calculated arenium cation
reaction profile.
Figure 1. Free energy diagrams (red, vacuum; blue, solvated) for arenium
cation and radical cation o-terphenyl condensation pathways.
The unexpectedly clean intramolecular hexacyclization of hexakis-
20
(
chloroacetamido)benzene also occurs without accumulation of
intermediates. This reaction was investigated by analogous sub-
stoichiometric mass balance experiments.
In summary, the intramolecular Scholl reaction of hexaphenyl-
benzene likely proceeds by protonation, electrophilic attack, depro-
tonation, and subsequent oxidation. C-C bonds are likely formed
stepwise and contiguously, with the first being formed the slowest.
The reaction is increasingly exergonic, possible due to increasing
REPE. It is likely that the utility of the Scholl reaction for the
formation of large PAHs arises from the slippery slope phenomenon.
Acknowledgment. This work was supported by an award from
the Research Corporation and by the University of Nevada.
Acknowledgment is made to the Donors of the American Chemical
Society Petroleum Research Fund for partial support of this research.
We thank Prof. S. H. Gellman for alerting us to ref 20.
Figure 2. Reaction coordinate diagram for 1 f 3. Labels: ai as shown; bi
protonation TS; ci arenium cation; di C-C bond formation TS; ei protonated
dihydro intermediate; fi deprotonation TS; gi neutral dihydro intermediate;
hi oxidation TS.
Supporting Information Available: Computational details, ener-
gies, coordinates, and experimental procedures. This material is
available free of charge via the Internet at http://pubs.acs.org.
Scheme 3. Hexaphenylbenzene Condensation
References
(
(
1) Scholl, R.; Mansfeld, J. Ber. Dtsch. Chem. Ges. 1910, 43, 1734-1746.
2) Fechtenk o¨ tter, A.; Tchebotareva, N.; Watson, M.; M u¨ llen, K. Tetrahedron
2001, 57, 3769-3783. Ito, S.; Wehmeier, M.; Brand, J. D.; K u¨ bel, C.;
Epsch, R.; Rabe, J. P.; M u¨ llen, K. Chem. Eur. J. 2000, 6, 4327-4342.
Iyer, V. S.; Wehmeier, M.; Brand, J. D.; Keegstra, M. A.; M u¨ llen, K.
Angew. Chem., Int. Ed. Engl. 1997, 36, 1604-1607. Simpson, C. D.;
Brand, J. D.; Berresheim, A. J.; Przybilla, L.; R a¨ der, H. J.; M u¨ llen, K.
Chem. Eur. J. 2002, 8, 1424-1429. Watson, M. D.; Fechtenk o¨ tter, A.;
M u¨ llen, K. Chem. ReV. 2001, 101, 1267-1300.
(
3) K u¨ bel, C.; Eckhardt, K.; Enkelmann, V.; Wegner, G.; M u¨ llen, K. J. Mater.
Chem. 2000, 10, 879-886.
(
4) Simpson, C. D.; Mattersteig, G.; Martin, K.; Gherghel, L.; Bauer, R. E.;
R a¨ der, H. J.; M u¨ llen, K. J. Am. Chem. Soc. 2004, 126, 3139-3147.
5) Deichmann, M.; N a¨ ther, C.; Herges, R. Org. Lett. 2003, 5, 1269-1271.
6) Naarmann, H.; Hanack, M.; Mattmer, R. Synthesis 1994, 477-478.
7) Kovacic, P.; Jones, M. B. Chem. ReV. 1987, 87, 357-379.
8) Three other intermediates were claimed in the patent literature, but
characterization was not provided (Halleux, A. L. US 3000984, 1961).
9) Lessene, G.; Feldman, K. S. In Modern Arene Chemistry: Concepts,
Synthesis, and Applications.; Astruc, D., Ed.; John Wiley & Sons: New
York, 2002; pp 479-538.
(
(
(
(
(
Table 1. Free Energies and TS CC Lengths (kcal/mol, Å)
(
10) Tanaka, M.; Nakashima, H.; Fujiwara, M.; Ando, H.; Souma, Y. J. Org.
Chem. 1996, 61, 788-792.
o,
δ
δ)298,solv
o,δ
i
∆G(d
i
−
c
i
R(C‚‚‚C)d
(
11) Balaban, A. T.; Nenitzescu, C. D. In Friedel-Crafts and Related
Reactions; Olah, G. A., Ed.; Wiley & Sons: New York, 1964; Vol. 2,
part 2, pp 979-1047.
step
∆G
298,solv
o-Ph
δ-PAH
o-Ph
δ-PAH
1
2
3
4
5
6
(a1f a2)
(a2f a3)
(a3f a4)
(a4f a5)
(a5f a6)
(a6f a7)
-4.03
-13.06
-13.93
-15.76
-18.35
-28.66
16.43
22.98
22.07
20.52
20.14
14.59
15.31
14.64
13.65
12.64
12.07
14.71
1.90
2.04
2.08
2.11
2.10
2.05
1.89
1.93
1.97
1.95
1.96
2.09
(
12) Calculations were performed at the B3LYP 6-31G(d) level, E, ZPE, G298
2 2
from frequency calculations and (∆Gsolv(CH Cl ) from single-point
solvation calculations; see the Supporting Information for full details.
13) Kryachko, E. S.; Nguyen, M. T. J. Phys. Chem. A 2001, 105, 153-155.
14) Cristiano, M. L. S.; Gago, D. J. P.; Gonsalves, A. M. d’ A. R.; Johnstone,
R. A. W.; McCarron, M.; Varej a˜ o, J. M. T. B. Org. Biomol. Chem. 2003,
(
(
1
, 565-574.
15) Dewar, M. J. S.; Goodman, D. W. J. Chem. Soc., Faraday Trans. 2 1972,
8, 1784-1788.
(
(
6
nated stationary points c
stationary points g and h
the unprotonated stationary points g
stationary points c , d , and e . It follows that dehydrogenation will
i
, d
. Conversely, weaker acids will stabilize
and h relative to the protonated
i i
, and e relative to the unprotonated
16) Staroverov, V. N.; Scuseria, G. E.; Tao, J.; Perdew, J. P. J. Chem. Phys.
2003, 119, 12129-12137.
17) Curtin, D. Y. Rec. Chem. Prog. 1954, 15, 111-128.
18) Randi c´ , M.; Guo, X. New J. Chem. 1999, 23, 251-260.
19) Hammond, G. S. J. Am. Chem. Soc. 1955, 77, 334-338.
i
i
(
(
(
i
i
i
i
i
be rate determining in the stronger acids, and either C-C bond
formation or proton transfer will be rate determining in the weaker
acids.
(20) Thomaides, J.; Maslak, P.; Breslow, R. J. Am. Chem. Soc. 1988, 110,
970-3979.
3
JA046513D
J. AM. CHEM. SOC.
9
VOL. 126, NO. 46, 2004 15003