Communications
[
1] A. Hillisch, L. F. Pineda, R. Hilgenfeld, Drug Discovery Today
004, 9, 659.
2
[
2] L. Marinelli, A. Meyer, D. Heckmann, A. Lavecchia, E.
Novellino, H. Kessler, J. Med. Chem. 2005, 48, 4166 – 4204.
3] R. O. Hynes, Cell 2002, 110, 673.
[
[
[
4] S. A. Mousa, Curr. Opin. Chem. Biol. 2002, 6, 534.
5] a) M. Aumailley, M. Gurrath, G. Müller, J. Calvete, R. Timpl, H.
Kessler, FEBS Lett. 1991, 291, 50; b) M. A. Dechantsreiter, E.
Planker, B. Mathä, E. Lohof, G. Hölzemann, A. Jonczyk, S. L.
Goodman, H. Kessler, J. Med. Chem. 1999, 42, 3033.
[
6] P. C. Brooks, A. M. P. Montgomery, M. Rosenfeld, R. A. Reis-
feld, T. Hu, G. Klier, D. A. Cheresh, Cell 1994, 79, 1157.
7] M. Shimaoka, T. A. Springer, Nat. Rev. Drug Discovery 2003, 2,
[
703.
[
8] R. O. Hynes, Nat. Med. 2002, 8, 918.
[
9] B. L. Bader, H. Rayburn, D. Crowley, R. O. Hynes, Cell 1998, 95,
507.
[
[
[
10] E. L. George, E. N. Georges-Labouesse, R. S. Patel-King, H.
Rayburn, R. O. Hynes, Development 1993, 119, 1079.
11] S. Kim, K. Bell, S. A. Mousa, J. A. Varner, Am. J. Pathol. 2000,
156, 1345.
12] a) J. P. Xiong, T. Stehle, R. Zhang, A. Joachimiak, M. Frech, S. L.
Goodman, M. A. Arnaout, Science 2002, 296, 151; b) K.-E.
Gottschalk, H. Kessler Angew. Chem. 2002, 41, 3767; Angew.
Chem. Int. Ed. 2002, 41, 3767.
Scheme 2. Synthesis of ligands 6a–e: a) 4a–e, N-Boc-b-tyrosine methyl
ester, PBu , ADDP, THF, 08C, 8 h; b) aqueous HCl, dioxane, 1 h;
[13] T. Xiao, J. Takagi, B. S. Coller, J. H. Wang, T. A. Springer, Nature
2004, 432, 59.
[14] J. Takagi, K. Strokovich, T. A. Springer, T. Walz, Embo J. 2003,
3
c) PhCOCl, dioxane, H O, NaHCO ; d) LiOH, methanol, H O.
2
3
2
[a] Yield: 4a,b,d: 66–48% over three steps; 4c: 30% over five steps.
22, 4607.
[
15] D. Zimmermann, E. W. Guthöhrlein, M. Malesevic, K. Sewald,
L. Wobbe, C. Heggemann, N. Sewald, ChemBioChem 2005, 6,
aqueous HCl in dioxane, acylated with an activated aromatic
acid (HATU, DIPEA in DMF) in the case of the ligands
272.
[
16] J. M. Smallheer, C. A. Weigelt, F. J. Woerner, J. S. Wells, W. F.
Daneker, S. A. Mousa, R. R. Wexler, P. K. Jadhav, Bioorg. Med.
Chem. Lett. 2004, 14, 383.
[17] G. P. Curley, H. Blum, M. J. Humphries, Cell. Mol. Life Sci. 1999,
56, 427.
18] G. M. Morris, D. S. Goodsell, R. S. Halliday, R. Huey, W. E.
Hart, R. K. Belew, A. J. Olson, J. Comput. Chem. 1998, 19, 1639.
19] L. Marinelli, A. Lavecchia, K. E. Gottschalk, E. Novellino, H.
Kessler, J. Med. Chem. 2003, 46, 4393.
20] C. Gibson, G. A. Sulyok, D. Hahn, S. L. Goodman, G. Hölze-
mann, H. Kessler, Angew. Chem. 2001, 113, 169; Angew. Chem.
Int. Ed. 2001, 40, 165.
[21] J. H. Hutchinson, W. Halczenko, K. M. Brashear, M. J. Breslin,
P. J. Coleman, L. T. Duong, C. Fernandez-Metzler, M. A.
Gentile, J. E. Fisher, G. D. Hartman, J. R. Huff, D. B. Kimmel,
C. T. Leu, R. S. Meissner, K. Merkle, R. Nagy, B. Pennypacker,
J. J. Perkins, T. Prueksaritanont, G. A. Rodan, S. L. Varga, G. A.
Wesolowski, A. E. Zartman, S. B. Rodan, M. E. Duggan, J. Med.
Chem. 2003, 46, 4790.
3
b,d,e,f or acylated with benzoyl chloride and NaHCO in
3
dioxane/water in the case of 6a–e and 3a. The sulfonamide 3c
was produced with mesitylenesulfonyl chloride and DIPEA in
DMF. In the last step, the methyl ester was finally cleaved
with 5 equivalents of LiOH in methanol/water and the
resulting ligands purified by using reverse-phase HPLC
techniques (for details regarding synthesis and compound
characterization see the Supporting Information).
[
[
[
Taking into account the re-evaluated role of the a5b1
integrin in the development of antiangiogenic drugs for
cancer therapy, we herein present the small non-peptidic
molecule 3 f, which selectively binds to the a5b1 integrin in
the subnanomolar range (IC = 0.7 nm). Minor modifications
5
0
of the compounds allow the design of highly active ligands
with good selectivity for avb3 over the a5b1 receptor,
whereas very low affinity towards the platelet integrin
aIIbb3 has been observed. On the basis of a5b1 homology
modeling, analysis of the ligand binding mode, and extensive
data on structure–activity relationships, we proposed a model
suitable for the rational design of selective a5b1 ligands for
the purpose of lead generation and biochemical studies on
integrin selectivity.
[22] L. Marinelli, K. E. Gottschalk, A. Meyer, E. Novellino, H.
Kessler, J. Med. Chem. 2004, 47, 4166.
[
23] A. Trejo, H. Arzeno, M. Browner, S. Chanda, S. Chen, D. D.
Corner, S. A. Dalrymple, P. Dunten, J. Lafague, B. Lovejoy, J.
Freire-Moar, J. Lim, J. Mcintosh, J. Miller, E. Papp, D. Reuter, R.
Roberts, F. Sanpablo, J. Saunders, K. Song, A. Villasenor, S. D.
Warren, M. Welch, P. Weller, P. E. Whiteley, L. Zeng, D. M.
Goldstein, J. Med. Chem. 2003, 46, 4702.
[24] K. C. Lee, D. Y. Chi, J. Org. Chem. 1999, 64, 8576.
[25] J. J. Marugan, C. Manthey, B. Anaclerio, L. Lafrance, T. Lu, T.
Markotan, K. A. Leonard, C. Crysler, S. Eisennagel, M. Das-
gupta, B. Tomczuk, J. Med. Chem. 2005, 48, 926.
Received: January 2, 2007
Published online: March 30, 2007
Keywords: antitumor agents · drug design · integrin ligands ·
.
receptors · structure–activityrelationships
3
574
ꢀ 2007 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
Angew. Chem. Int. Ed. 2007, 46, 3571 –3574